» Articles » PMID: 38468027

Tenets and Methods of Fractal Analysis (1/f Noise)

Overview
Journal Adv Neurobiol
Publisher Springer
Date 2024 Mar 12
PMID 38468027
Authors
Affiliations
Soon will be listed here.
Abstract

This chapter deals with the methodical challenges confronting researchers of the fractal phenomenon known as pink or 1/f noise. This chapter introduces concepts and statistical techniques for identifying fractal patterns in empirical time series. It defines some basic statistical terms, describes two essential characteristics of pink noise (self-similarity and long memory), and outlines four parameters representing the theoretical properties of fractal processes: the Hurst coefficient (H), the scaling exponent (α), the power exponent (β), and the fractional differencing parameter (d) of the ARFIMA (autoregressive fractionally integrated moving average) method. Then, it compares and evaluates different approaches to estimating fractal parameters from observed data and outlines the advantages, disadvantages, and constraints of some popular estimators. The final section of this chapter answers the questions: Which strategy is appropriate for the identification of fractal noise in empirical settings and how can it be applied to the data?

Citing Articles

Computational Fractal-Based Neurosurgery.

Ieva A, Davidson J, Russo C Adv Exp Med Biol. 2024; 1462:97-105.

PMID: 39523261 DOI: 10.1007/978-3-031-64892-2_6.

References
1.
Aks D, Sprott J . The role of depth and 1/f dynamics in perceiving reversible figures. Nonlinear Dynamics Psychol Life Sci. 2003; 7(2):161-80. DOI: 10.1023/a:1021431631831. View

2.
Bak , Tang , Wiesenfeld . Self-organized criticality: An explanation of the 1/f noise. Phys Rev Lett. 1987; 59(4):381-384. DOI: 10.1103/PhysRevLett.59.381. View

3.
Buiatti M, Papo D, Baudonniere P, van Vreeswijk C . Feedback modulates the temporal scale-free dynamics of brain electrical activity in a hypothesis testing task. Neuroscience. 2007; 146(3):1400-12. DOI: 10.1016/j.neuroscience.2007.02.048. View

4.
Chen Y, Ding M, Kelso J . Origins of timing errors in human sensorimotor coordination. J Mot Behav. 2001; 33(1):3-8. DOI: 10.1080/00222890109601897. View

5.
Delignieres D, Lemoine L, Torre K . Time intervals production in tapping and oscillatory motion. Hum Mov Sci. 2004; 23(2):87-103. DOI: 10.1016/j.humov.2004.07.001. View