6.
Kramer M, Stoyell S, Chinappen D, Ostrowski L, Spencer E, Morgan A
. Focal Sleep Spindle Deficits Reveal Focal Thalamocortical Dysfunction and Predict Cognitive Deficits in Sleep Activated Developmental Epilepsy. J Neurosci. 2021; 41(8):1816-1829.
PMC: 8115887.
DOI: 10.1523/JNEUROSCI.2009-20.2020.
View
7.
Jiang X, Gonzalez-Martinez J, Halgren E
. Coordination of Human Hippocampal Sharpwave Ripples during NREM Sleep with Cortical Theta Bursts, Spindles, Downstates, and Upstates. J Neurosci. 2019; 39(44):8744-8761.
PMC: 6820213.
DOI: 10.1523/JNEUROSCI.2857-18.2019.
View
8.
Redline S, Kirchner H, Quan S, Gottlieb D, Kapur V, Newman A
. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med. 2004; 164(4):406-18.
DOI: 10.1001/archinte.164.4.406.
View
9.
Fernandez L, Luthi A
. Sleep Spindles: Mechanisms and Functions. Physiol Rev. 2019; 100(2):805-868.
DOI: 10.1152/physrev.00042.2018.
View
10.
Mander B, Rao V, Lu B, Saletin J, Ancoli-Israel S, Jagust W
. Impaired prefrontal sleep spindle regulation of hippocampal-dependent learning in older adults. Cereb Cortex. 2013; 24(12):3301-9.
PMC: 4224242.
DOI: 10.1093/cercor/bht188.
View
11.
Parrino L, Ferri R, Bruni O, Terzano M
. Cyclic alternating pattern (CAP): the marker of sleep instability. Sleep Med Rev. 2011; 16(1):27-45.
DOI: 10.1016/j.smrv.2011.02.003.
View
12.
Brown E, Barbieri R, Ventura V, Kass R, Frank L
. The time-rescaling theorem and its application to neural spike train data analysis. Neural Comput. 2002; 14(2):325-46.
DOI: 10.1162/08997660252741149.
View
13.
Osorio-Forero A, Cardis R, Vantomme G, Guillaume-Gentil A, Katsioudi G, Devenoges C
. Noradrenergic circuit control of non-REM sleep substates. Curr Biol. 2021; 31(22):5009-5023.e7.
DOI: 10.1016/j.cub.2021.09.041.
View
14.
Lecci S, Fernandez L, Weber F, Cardis R, Chatton J, Born J
. Coordinated infraslow neural and cardiac oscillations mark fragility and offline periods in mammalian sleep. Sci Adv. 2017; 3(2):e1602026.
PMC: 5298853.
DOI: 10.1126/sciadv.1602026.
View
15.
Dijk D, Czeisler C
. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J Neurosci. 1995; 15(5 Pt 1):3526-38.
PMC: 6578184.
View
16.
Chen X, Wang R, Zee P, Lutsey P, Javaheri S, Alcantara C
. Racial/Ethnic Differences in Sleep Disturbances: The Multi-Ethnic Study of Atherosclerosis (MESA). Sleep. 2014; 38(6):877-88.
PMC: 4434554.
DOI: 10.5665/sleep.4732.
View
17.
Nir Y, Staba R, Andrillon T, Vyazovskiy V, Cirelli C, Fried I
. Regional slow waves and spindles in human sleep. Neuron. 2011; 70(1):153-69.
PMC: 3108825.
DOI: 10.1016/j.neuron.2011.02.043.
View
18.
Schabus M, Hodlmoser K, Gruber G, Sauter C, Anderer P, Klosch G
. Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities. Eur J Neurosci. 2006; 23(7):1738-46.
DOI: 10.1111/j.1460-9568.2006.04694.x.
View
19.
Winer J, Mander B, Helfrich R, Maass A, Harrison T, Baker S
. Sleep as a Potential Biomarker of Tau and β-Amyloid Burden in the Human Brain. J Neurosci. 2019; 39(32):6315-6324.
PMC: 6687908.
DOI: 10.1523/JNEUROSCI.0503-19.2019.
View
20.
Warby S, Wendt S, Welinder P, Munk E, Carrillo O, Sorensen H
. Sleep-spindle detection: crowdsourcing and evaluating performance of experts, non-experts and automated methods. Nat Methods. 2014; 11(4):385-92.
PMC: 3972193.
DOI: 10.1038/nmeth.2855.
View