6.
Zhao Z, Fu G, Liu S, Elokely K, Doerksen R, Chen Y
. Drug activity prediction using multiple-instance learning via joint instance and feature selection. BMC Bioinformatics. 2013; 14 Suppl 14:S16.
PMC: 3850986.
DOI: 10.1186/1471-2105-14-S14-S16.
View
7.
Quellec G, Lamard M, Abramoff M, Decenciere E, Lay B, Erginay A
. A multiple-instance learning framework for diabetic retinopathy screening. Med Image Anal. 2012; 16(6):1228-40.
DOI: 10.1016/j.media.2012.06.003.
View
8.
Krishna H, Desai K, Slostad B, Bhayani S, Arnold J, Ouwerkerk W
. Fully Automated Artificial Intelligence Assessment of Aortic Stenosis by Echocardiography. J Am Soc Echocardiogr. 2023; 36(7):769-777.
DOI: 10.1016/j.echo.2023.03.008.
View
9.
Wu N, Phang J, Park J, Shen Y, Huang Z, Zorin M
. Deep Neural Networks Improve Radiologists' Performance in Breast Cancer Screening. IEEE Trans Med Imaging. 2019; 39(4):1184-1194.
PMC: 7427471.
DOI: 10.1109/TMI.2019.2945514.
View
10.
Xu Y, Zhu J, Chang E, Lai M, Tu Z
. Weakly supervised histopathology cancer image segmentation and classification. Med Image Anal. 2014; 18(3):591-604.
DOI: 10.1016/j.media.2014.01.010.
View
11.
Hou L, Samaras D, Kurc T, Gao Y, Davis J, Saltz J
. Patch-based Convolutional Neural Network for Whole Slide Tissue Image Classification. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2016; 2016:2424-2433.
PMC: 5085270.
DOI: 10.1109/CVPR.2016.266.
View
12.
Ding J, Cheng H, Huang J, Liu J, Zhang Y
. Breast ultrasound image classification based on multiple-instance learning. J Digit Imaging. 2012; 25(5):620-7.
PMC: 3447095.
DOI: 10.1007/s10278-012-9499-x.
View
13.
Gardezi S, Myerson S, Chambers J, Coffey S, dArcy J, Hobbs F
. Cardiac auscultation poorly predicts the presence of valvular heart disease in asymptomatic primary care patients. Heart. 2018; 104(22):1832-1835.
DOI: 10.1136/heartjnl-2018-313082.
View
14.
Li B, Li Y, Eliceiri K
. Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning. Conf Comput Vis Pattern Recognit Workshops. 2022; 2021:14318-14328.
PMC: 8765709.
DOI: 10.1109/CVPR46437.2021.01409.
View
15.
Dai W, Nazzari H, Namasivayam M, Hung J, Stultz C
. Identifying Aortic Stenosis With a Single Parasternal Long-Axis Video Using Deep Learning. J Am Soc Echocardiogr. 2022; 36(1):116-118.
DOI: 10.1016/j.echo.2022.10.014.
View
16.
Wessler B, Huang Z, Long Jr G, Pacifici S, Prashar N, Karmiy S
. Automated Detection of Aortic Stenosis Using Machine Learning. J Am Soc Echocardiogr. 2023; 36(4):411-420.
PMC: 10653158.
DOI: 10.1016/j.echo.2023.01.006.
View
17.
Quellec G, Cazuguel G, Cochener B, Lamard M
. Multiple-Instance Learning for Medical Image and Video Analysis. IEEE Rev Biomed Eng. 2017; 10:213-234.
DOI: 10.1109/RBME.2017.2651164.
View
18.
Yadgir S, Owens Johnson C, Aboyans V, Adebayo O, Adedoyin R, Afarideh M
. Global, Regional, and National Burden of Calcific Aortic Valve and Degenerative Mitral Valve Diseases, 1990-2017. Circulation. 2020; 141(21):1670-1680.
DOI: 10.1161/CIRCULATIONAHA.119.043391.
View
19.
Kandemir M, Hamprecht F
. Computer-aided diagnosis from weak supervision: a benchmarking study. Comput Med Imaging Graph. 2014; 42:44-50.
DOI: 10.1016/j.compmedimag.2014.11.010.
View
20.
Yang C, Ojha B, Aranoff N, Green P, Tavassolian N
. Classification of aortic stenosis using conventional machine learning and deep learning methods based on multi-dimensional cardio-mechanical signals. Sci Rep. 2020; 10(1):17521.
PMC: 7568576.
DOI: 10.1038/s41598-020-74519-6.
View