6.
Feng H, Ding J, Zhu D, Liu X, Xu X, Zhang Y
. Structural and mechanistic insights into NDM-1 catalyzed hydrolysis of cephalosporins. J Am Chem Soc. 2014; 136(42):14694-7.
DOI: 10.1021/ja508388e.
View
7.
Dai T, Xiao Z, Shan D, Moreno A, Li H, Prakash M
. Culture-Independent Multiplexed Detection of Drug-Resistant Bacteria Using Surface-Enhanced Raman Scattering. ACS Sens. 2023; 8(8):3264-3271.
DOI: 10.1021/acssensors.3c01345.
View
8.
Yang H, Aitha M, Marts A, Hetrick A, Bennett B, Crowder M
. Spectroscopic and mechanistic studies of heterodimetallic forms of metallo-β-lactamase NDM-1. J Am Chem Soc. 2014; 136(20):7273-85.
PMC: 4046764.
DOI: 10.1021/ja410376s.
View
9.
King D, Worrall L, Gruninger R, Strynadka N
. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. J Am Chem Soc. 2012; 134(28):11362-5.
DOI: 10.1021/ja303579d.
View
10.
Emsley P, Lohkamp B, Scott W, Cowtan K
. Features and development of Coot. Acta Crystallogr D Biol Crystallogr. 2010; 66(Pt 4):486-501.
PMC: 2852313.
DOI: 10.1107/S0907444910007493.
View
11.
Li N, Xu Y, Xia Q, Bai C, Wang T, Wang L
. Simplified captopril analogues as NDM-1 inhibitors. Bioorg Med Chem Lett. 2013; 24(1):386-9.
DOI: 10.1016/j.bmcl.2013.10.068.
View
12.
Cheong W, Tsang M, So P, Chung W, Leung Y, Chan P
. Fluorescent TEM-1 β-lactamase with wild-type activity as a rapid drug sensor for in vitro drug screening. Biosci Rep. 2014; 34(5).
PMC: 4155835.
DOI: 10.1042/BSR20140057.
View
13.
Klingler F, Wichelhaus T, Frank D, Cuesta-Bernal J, El-Delik J, Muller H
. Approved Drugs Containing Thiols as Inhibitors of Metallo-β-lactamases: Strategy To Combat Multidrug-Resistant Bacteria. J Med Chem. 2015; 58(8):3626-30.
DOI: 10.1021/jm501844d.
View
14.
Ma G, Wang S, Wu K, Zhang W, Ahmad A, Hao Q
. Structure-guided optimization of D-captopril for discovery of potent NDM-1 inhibitors. Bioorg Med Chem. 2020; 29:115902.
DOI: 10.1016/j.bmc.2020.115902.
View
15.
Bush K
. The ABCD's of β-lactamase nomenclature. J Infect Chemother. 2013; 19(4):549-59.
DOI: 10.1007/s10156-013-0640-7.
View
16.
Thomas P, Zheng M, Wu S, Guo H, Liu D, Xu D
. Characterization of purified New Delhi metallo-β-lactamase-1. Biochemistry. 2011; 50(46):10102-13.
DOI: 10.1021/bi201449r.
View
17.
Kumarasamy K, Toleman M, Walsh T, Bagaria J, Butt F, Balakrishnan R
. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis. 2010; 10(9):597-602.
PMC: 2933358.
DOI: 10.1016/S1473-3099(10)70143-2.
View
18.
Cheng Z, Thomas P, Ju L, Bergstrom A, Mason K, Clayton D
. Evolution of New Delhi metallo-β-lactamase (NDM) in the clinic: Effects of NDM mutations on stability, zinc affinity, and mono-zinc activity. J Biol Chem. 2018; 293(32):12606-12618.
PMC: 6093243.
DOI: 10.1074/jbc.RA118.003835.
View
19.
Wang T, Xu K, Zhao L, Tong R, Xiong L, Shi J
. Recent research and development of NDM-1 inhibitors. Eur J Med Chem. 2021; 223:113667.
DOI: 10.1016/j.ejmech.2021.113667.
View
20.
Zhang H, Hao Q
. Crystal structure of NDM-1 reveals a common β-lactam hydrolysis mechanism. FASEB J. 2011; 25(8):2574-82.
DOI: 10.1096/fj.11-184036.
View