» Articles » PMID: 38421871

The Functional and Anatomical Characterization of Three Spinal Output Pathways of the Anterolateral Tract

Overview
Journal Cell Rep
Publisher Cell Press
Date 2024 Feb 29
PMID 38421871
Authors
Affiliations
Soon will be listed here.
Abstract

The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.

Citing Articles

A Viral Labelling Study of Spinal Trigeminal Nucleus Caudalis Projection Neurons Targeting the Parabrachial Nucleus.

Maric S, Hasan M, Pounder M, Graham B, Browne T J Neurochem. 2025; 169(3):e70028.

PMID: 40050251 PMC: 11885192. DOI: 10.1111/jnc.70028.


Central projections of nociceptive input originating from the low back and limb muscle in rats.

Hoheisel U, Treede R, Mense S, Taguchi T Sci Rep. 2025; 15(1):2552.

PMID: 39833283 PMC: 11747617. DOI: 10.1038/s41598-025-86832-z.


Lateral lamina V projection neuron axon collaterals connect sensory processing across the dorsal horn of the mouse spinal cord.

Browne T, Smith K, Gradwell M, Dayas C, Callister R, Hughes D Sci Rep. 2024; 14(1):26354.

PMID: 39487174 PMC: 11530558. DOI: 10.1038/s41598-024-73620-4.


Kappa opioids inhibit spinal output neurons to suppress itch.

Sheahan T, Warwick C, Cui A, Baranger D, Perry V, Smith K Sci Adv. 2024; 10(39):eadp6038.

PMID: 39321286 PMC: 11423883. DOI: 10.1126/sciadv.adp6038.


Multiple Posterior Insula Projections to the Brainstem Descending Pain Modulatory System.

Liang D, Labrakakis C Int J Mol Sci. 2024; 25(17).

PMID: 39273133 PMC: 11395413. DOI: 10.3390/ijms25179185.

References
1.
Cameron D, Polgar E, Gutierrez-Mecinas M, Gomez-Lima M, Watanabe M, Todd A . The organisation of spinoparabrachial neurons in the mouse. Pain. 2015; 156(10):2061-2071. PMC: 4770364. DOI: 10.1097/j.pain.0000000000000270. View

2.
Li J, Serafin E, Baccei M . Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage. Pain. 2022; 164(4):905-917. PMC: 10033328. DOI: 10.1097/j.pain.0000000000002787. View

3.
Willis W, Westlund K . Neuroanatomy of the pain system and of the pathways that modulate pain. J Clin Neurophysiol. 1997; 14(1):2-31. PMC: 7859971. DOI: 10.1097/00004691-199701000-00002. View

4.
Deng H, Xiao X, Wang Z . Periaqueductal Gray Neuronal Activities Underlie Different Aspects of Defensive Behaviors. J Neurosci. 2016; 36(29):7580-8. PMC: 6705556. DOI: 10.1523/JNEUROSCI.4425-15.2016. View

5.
Browne T, Smith K, Gradwell M, Iredale J, Dayas C, Callister R . Spinoparabrachial projection neurons form distinct classes in the mouse dorsal horn. Pain. 2021; 162(7):1977-1994. PMC: 8208100. DOI: 10.1097/j.pain.0000000000002194. View