» Articles » PMID: 38409214

SEMORE: SEgmentation and MORphological FingErprinting by Machine Learning Automates Super-resolution Data Analysis

Overview
Journal Nat Commun
Specialty Biology
Date 2024 Feb 26
PMID 38409214
Authors
Affiliations
Soon will be listed here.
Abstract

The morphology of protein assemblies impacts their behaviour and contributes to beneficial and aberrant cellular responses. While single-molecule localization microscopy provides the required spatial resolution to investigate these assemblies, the lack of universal robust analytical tools to extract and quantify underlying structures limits this powerful technique. Here we present SEMORE, a semi-automatic machine learning framework for universal, system- and input-dependent, analysis of super-resolution data. SEMORE implements a multi-layered density-based clustering module to dissect biological assemblies and a morphology fingerprinting module for quantification by multiple geometric and kinetics-based descriptors. We demonstrate SEMORE on simulations and diverse raw super-resolution data: time-resolved insulin aggregates, and published data of dSTORM imaging of nuclear pore complexes, fibroblast growth receptor 1, sptPALM of Syntaxin 1a and dynamic live-cell PALM of ryanodine receptors. SEMORE extracts and quantifies all protein assemblies, their temporal morphology evolution and provides quantitative insights, e.g. classification of heterogeneous insulin aggregation pathways and NPC geometry in minutes. SEMORE is a general analysis platform for super-resolution data, and being a time-aware framework can also support the rise of 4D super-resolution data.

Citing Articles

CsgA gatekeeper residues control nucleation but not stability of functional amyloid.

Olsen W, Courtade G, Pena-Diaz S, Nagaraj M, Sonderby T, Mulder F Protein Sci. 2024; 33(10):e5178.

PMID: 39302107 PMC: 11414021. DOI: 10.1002/pro.5178.


ECLiPSE: a versatile classification technique for structural and morphological analysis of 2D and 3D single-molecule localization microscopy data.

Hugelier S, Tang Q, Kim H, Gyparaki M, Bond C, Santiago-Ruiz A Nat Methods. 2024; 21(10):1909-1915.

PMID: 39256629 PMC: 11466814. DOI: 10.1038/s41592-024-02414-3.


Guardians of memory: The urgency of early dementia screening in an aging society.

Hu X, Ma Y, Karako K, Song P, Tang W, Xia Y Intractable Rare Dis Res. 2024; 13(3):133-137.

PMID: 39220280 PMC: 11350203. DOI: 10.5582/irdr.2024.01026.


AI analysis of super-resolution microscopy: Biological discovery in the absence of ground truth.

Nabi I, Cardoen B, Khater I, Gao G, Wong T, Hamarneh G J Cell Biol. 2024; 223(8).

PMID: 38865088 PMC: 11169916. DOI: 10.1083/jcb.202311073.

References
1.
Krebs M, Bromley E, Rogers S, Donald A . The mechanism of amyloid spherulite formation by bovine insulin. Biophys J. 2004; 88(3):2013-21. PMC: 1305253. DOI: 10.1529/biophysj.104.051896. View

2.
Hatzakis N, Bhatia V, Larsen J, Madsen K, Bolinger P, Kunding A . How curved membranes recruit amphipathic helices and protein anchoring motifs. Nat Chem Biol. 2009; 5(11):835-41. DOI: 10.1038/nchembio.213. View

3.
Raices M, DAngelo M . Nuclear pore complex composition: a new regulator of tissue-specific and developmental functions. Nat Rev Mol Cell Biol. 2012; 13(11):687-99. DOI: 10.1038/nrm3461. View

4.
Zhang M, Pinholt H, Zhou X, Bohr S, Banetta L, Zaccone A . Direct observation of heterogeneous formation of amyloid spherulites in real-time by super-resolution microscopy. Commun Biol. 2022; 5(1):850. PMC: 9392779. DOI: 10.1038/s42003-022-03810-1. View

5.
Bohr F, Bohr S, Mishra N, Gonzalez-Foutel N, Pinholt H, Wu S . Enhanced hexamerization of insulin via assembly pathway rerouting revealed by single particle studies. Commun Biol. 2023; 6(1):178. PMC: 9932072. DOI: 10.1038/s42003-022-04386-6. View