6.
Rehmann M, Skeens K, Kharkar P, Ford E, Maverakis E, Lee K
. Tuning and Predicting Mesh Size and Protein Release from Step Growth Hydrogels. Biomacromolecules. 2017; 18(10):3131-3142.
PMC: 6699171.
DOI: 10.1021/acs.biomac.7b00781.
View
7.
Sheth S, Barnard E, Hyatt B, Rathinam M, Zustiak S
. Predicting Drug Release From Degradable Hydrogels Using Fluorescence Correlation Spectroscopy and Mathematical Modeling. Front Bioeng Biotechnol. 2020; 7:410.
PMC: 6951421.
DOI: 10.3389/fbioe.2019.00410.
View
8.
Siepmann J, Siepmann F
. Mathematical modeling of drug delivery. Int J Pharm. 2008; 364(2):328-43.
DOI: 10.1016/j.ijpharm.2008.09.004.
View
9.
van der Kooij R, Steendam R, Frijlink H, Hinrichs W
. An overview of the production methods for core-shell microspheres for parenteral controlled drug delivery. Eur J Pharm Biopharm. 2021; 170:24-42.
DOI: 10.1016/j.ejpb.2021.11.007.
View
10.
Jeyhani M, Mak S, Sammut S, Shum H, Hwang D, Tsai S
. Controlled Electrospray Generation of Nonspherical Alginate Microparticles. Chemphyschem. 2017; 19(16):2113-2118.
DOI: 10.1002/cphc.201701094.
View
11.
Thu B, Gaserod O, Paus D, Mikkelsen A, Skjak-Braek G, Toffanin R
. Inhomogeneous alginate gel spheres: an assessment of the polymer gradients by synchrotron radiation-induced X-ray emission, magnetic resonance microimaging, and mathematical modeling. Biopolymers. 2000; 53(1):60-71.
DOI: 10.1002/(SICI)1097-0282(200001)53:1<60::AID-BIP6>3.0.CO;2-F.
View
12.
Miyamoto S, Shimono K
. Molecular Modeling to Estimate the Diffusion Coefficients of Drugs and Other Small Molecules. Molecules. 2020; 25(22).
PMC: 7709040.
DOI: 10.3390/molecules25225340.
View
13.
Turco G, Donati I, Grassi M, Marchioli G, Lapasin R, Paoletti S
. Mechanical spectroscopy and relaxometry on alginate hydrogels: a comparative analysis for structural characterization and network mesh size determination. Biomacromolecules. 2011; 12(4):1272-82.
DOI: 10.1021/bm101556m.
View
14.
Zhang X, Qu Q, Zhou A, Wang Y, Zhang J, Xiong R
. Core-shell microparticles: From rational engineering to diverse applications. Adv Colloid Interface Sci. 2021; 299:102568.
DOI: 10.1016/j.cis.2021.102568.
View
15.
Chen X, Zhu Q, Li Z, Yan H, Lin Q
. The Molecular Structure and Self-Assembly Behavior of Reductive Amination of Oxidized Alginate Derivative for Hydrophobic Drug Delivery. Molecules. 2021; 26(19).
PMC: 8510318.
DOI: 10.3390/molecules26195821.
View
16.
Yayehrad A, Wondie G, Marew T
. Different Nanotechnology Approaches for Ciprofloxacin Delivery Against Multidrug-Resistant Microbes. Infect Drug Resist. 2022; 15:413-426.
PMC: 8828447.
DOI: 10.2147/IDR.S348643.
View
17.
Axpe E, Chan D, Offeddu G, Chang Y, Merida D, Lopez Hernandez H
. A Multiscale Model for Solute Diffusion in Hydrogels. Macromolecules. 2019; 52(18):6889-6897.
PMC: 6764024.
DOI: 10.1021/acs.macromol.9b00753.
View
18.
Su Y, Zhang B, Sun R, Liu W, Zhu Q, Zhang X
. PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application. Drug Deliv. 2021; 28(1):1397-1418.
PMC: 8248937.
DOI: 10.1080/10717544.2021.1938756.
View
19.
Kim M, Lee J, Oh H, Song D, Kwak H, Yun H
. Effect of shear viscosity on the preparation of sphere-like silk fibroin microparticles by electrospraying. Int J Biol Macromol. 2015; 79:988-95.
DOI: 10.1016/j.ijbiomac.2015.05.040.
View
20.
Romana B, Hassan M, Sonvico F, Garrastazu Pereira G, Mason A, Thordarson P
. A liposome-micelle-hybrid (LMH) oral delivery system for poorly water-soluble drugs: Enhancing solubilisation and intestinal transport. Eur J Pharm Biopharm. 2020; 154:338-347.
DOI: 10.1016/j.ejpb.2020.07.022.
View