6.
Bruxelle J, Mizrahi A, Hoys S, Collignon A, Janoir C, Pechine S
. Clostridium difficile flagellin FliC: Evaluation as adjuvant and use in a mucosal vaccine against Clostridium difficile. PLoS One. 2017; 12(11):e0187212.
PMC: 5703446.
DOI: 10.1371/journal.pone.0187212.
View
7.
Berges M, Michel A, Lassek C, Nuss A, Beckstette M, Dersch P
. Iron Regulation in . Front Microbiol. 2019; 9:3183.
PMC: 6311696.
DOI: 10.3389/fmicb.2018.03183.
View
8.
Ghose C, Eugenis I, Sun X, Edwards A, McBride S, Pride D
. Immunogenicity and protective efficacy of recombinant Clostridium difficile flagellar protein FliC. Emerg Microbes Infect. 2016; 5:e8.
PMC: 4777929.
DOI: 10.1038/emi.2016.8.
View
9.
Twine S, Reid C, Aubry A, McMullin D, Fulton K, Austin J
. Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol. 2009; 191(22):7050-62.
PMC: 2772495.
DOI: 10.1128/JB.00861-09.
View
10.
Bouche L, Panico M, Hitchen P, Binet D, Sastre F, Faulds-Pain A
. The Type B Flagellin of Hypervirulent Clostridium difficile Is Modified with Novel Sulfonated Peptidylamido-glycans. J Biol Chem. 2016; 291(49):25439-25449.
PMC: 5207245.
DOI: 10.1074/jbc.M116.749481.
View
11.
Razim A, Pacyga K, Naporowski P, Martynowski D, Szuba A, Gamian A
. Identification of linear epitopes on the flagellar proteins of Clostridioides difficile. Sci Rep. 2021; 11(1):9940.
PMC: 8113543.
DOI: 10.1038/s41598-021-89488-7.
View
12.
Ofori E, Ramai D, Dhawan M, Mustafa F, Gasperino J, Reddy M
. Community-acquired Clostridium difficile: epidemiology, ribotype, risk factors, hospital and intensive care unit outcomes, and current and emerging therapies. J Hosp Infect. 2018; 99(4):436-442.
DOI: 10.1016/j.jhin.2018.01.015.
View
13.
Wang S, Zhu D, Sun X
. Development of an Effective Nontoxigenic Clostridioides difficile-Based Oral Vaccine against C. difficile Infection. Microbiol Spectr. 2022; 10(3):e0026322.
PMC: 9241731.
DOI: 10.1128/spectrum.00263-22.
View
14.
Girinathan B, Ou J, Dupuy B, Govind R
. Pleiotropic roles of Clostridium difficile sin locus. PLoS Pathog. 2018; 14(3):e1006940.
PMC: 5864091.
DOI: 10.1371/journal.ppat.1006940.
View
15.
Faulds-Pain A, Twine S, Vinogradov E, Strong P, Dell A, Buckley A
. The post-translational modification of the Clostridium difficile flagellin affects motility, cell surface properties and virulence. Mol Microbiol. 2014; 94(2):272-89.
PMC: 4441256.
DOI: 10.1111/mmi.12755.
View
16.
Yonekura K, Maki-Yonekura S, Namba K
. Complete atomic model of the bacterial flagellar filament by electron cryomicroscopy. Nature. 2003; 424(6949):643-50.
DOI: 10.1038/nature01830.
View
17.
Schwanbeck J, Oehmig I, Gross U, Bohne W
. minimal nutrient requirements for flagellar motility. Front Microbiol. 2023; 14:1172707.
PMC: 10098170.
DOI: 10.3389/fmicb.2023.1172707.
View
18.
Soavelomandroso A, Gaudin F, Hoys S, Nicolas V, Vedantam G, Janoir C
. Biofilm Structures in a Mono-Associated Mouse Model of Infection. Front Microbiol. 2017; 8:2086.
PMC: 5661025.
DOI: 10.3389/fmicb.2017.02086.
View
19.
Anjuwon-Foster B, Tamayo R
. A genetic switch controls the production of flagella and toxins in Clostridium difficile. PLoS Genet. 2017; 13(3):e1006701.
PMC: 5386303.
DOI: 10.1371/journal.pgen.1006701.
View
20.
Schwanbeck J, Oehmig I, Gross U, Zautner A, Bohne W
. Single Cell Swimming Strategy: A Novel Motility Pattern Regulated by Viscoelastic Properties of the Environment. Front Microbiol. 2021; 12:715220.
PMC: 8333305.
DOI: 10.3389/fmicb.2021.715220.
View