» Articles » PMID: 38392008

Deep Learning-Based Culture-Free Bacteria Detection in Urine Using Large-Volume Microscopy

Overview
Specialty Biotechnology
Date 2024 Feb 23
PMID 38392008
Authors
Affiliations
Soon will be listed here.
Abstract

Bacterial infections, increasingly resistant to common antibiotics, pose a global health challenge. Traditional diagnostics often depend on slow cell culturing, leading to empirical treatments that accelerate antibiotic resistance. We present a novel large-volume microscopy (LVM) system for rapid, point-of-care bacterial detection. This system, using low magnification (1-2×), visualizes sufficient sample volumes, eliminating the need for culture-based enrichment. Employing deep neural networks, our model demonstrates superior accuracy in detecting uropathogenic compared to traditional machine learning methods. Future endeavors will focus on enriching our datasets with mixed samples and a broader spectrum of uropathogens, aiming to extend the applicability of our model to clinical samples.

Citing Articles

Enhanced Nanoparticle Recognition via Deep Learning-Accelerated Plasmonic Sensing.

Jin K, Shen J, Wang Y, Yang Y, Cao S Biosensors (Basel). 2024; 14(8).

PMID: 39194592 PMC: 11353015. DOI: 10.3390/bios14080363.

References
1.
Lammers R, Gibson S, Kovacs D, Sears W, Strachan G . Comparison of test characteristics of urine dipstick and urinalysis at various test cutoff points. Ann Emerg Med. 2001; 38(5):505-12. DOI: 10.1067/mem.2001.119427. View

2.
Van Boeckel T, Gandra S, Ashok A, Caudron Q, Grenfell B, Levin S . Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis. 2014; 14(8):742-750. DOI: 10.1016/S1473-3099(14)70780-7. View

3.
Flores-Mireles A, Walker J, Caparon M, Hultgren S . Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat Rev Microbiol. 2015; 13(5):269-84. PMC: 4457377. DOI: 10.1038/nrmicro3432. View

4.
. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022; 399(10325):629-655. PMC: 8841637. DOI: 10.1016/S0140-6736(21)02724-0. View

5.
Hurlbut 3rd T, Littenberg B . The diagnostic accuracy of rapid dipstick tests to predict urinary tract infection. Am J Clin Pathol. 1991; 96(5):582-8. DOI: 10.1093/ajcp/96.5.582. View