6.
Mikstacka R, Stefanski T, Rozanski J
. Tubulin-interactive stilbene derivatives as anticancer agents. Cell Mol Biol Lett. 2013; 18(3):368-97.
PMC: 6275897.
DOI: 10.2478/s11658-013-0094-z.
View
7.
Mustafa M, Anwar S, Elgamal F, Ahmed E, Aly O
. Potent combretastatin A-4 analogs containing 1,2,4-triazole: Synthesis, antiproliferative, anti-tubulin activity, and docking study. Eur J Med Chem. 2019; 183:111697.
DOI: 10.1016/j.ejmech.2019.111697.
View
8.
Fu D, Yang J, Li P, Hou Y, Huang S, Tippin M
. Bioactive heterocycles containing a 3,4,5-trimethoxyphenyl fragment exerting potent antiproliferative activity through microtubule destabilization. Eur J Med Chem. 2018; 157:50-61.
DOI: 10.1016/j.ejmech.2018.07.060.
View
9.
Checchi P, Nettles J, Zhou J, Snyder J, Joshi H
. Microtubule-interacting drugs for cancer treatment. Trends Pharmacol Sci. 2003; 24(7):361-5.
DOI: 10.1016/S0165-6147(03)00161-5.
View
10.
Liang T, Lu L, Song X, Qi J, Wang J
. Combination of microtubule targeting agents with other antineoplastics for cancer treatment. Biochim Biophys Acta Rev Cancer. 2022; 1877(5):188777.
DOI: 10.1016/j.bbcan.2022.188777.
View
11.
Zheng S, Zhong Q, Mottamal M, Zhang Q, Zhang C, Lemelle E
. Design, synthesis, and biological evaluation of novel pyridine-bridged analogues of combretastatin-A4 as anticancer agents. J Med Chem. 2014; 57(8):3369-81.
PMC: 4002123.
DOI: 10.1021/jm500002k.
View
12.
Metzler M, Neumann H
. Epoxidation of the stilbene double bond, a major pathway in aminostilbene metabolism. Xenobiotica. 1977; 7(3):117-32.
DOI: 10.3109/00498257709036244.
View
13.
Brown A, Fisher M, Tozer G, Kanthou C, Harrity J
. Sydnone Cycloaddition Route to Pyrazole-Based Analogs of Combretastatin A4. J Med Chem. 2016; 59(20):9473-9488.
DOI: 10.1021/acs.jmedchem.6b01128.
View
14.
Carr M, Greene L, Knox A, Lloyd D, Zisterer D, Meegan M
. Lead identification of conformationally restricted β-lactam type combretastatin analogues: synthesis, antiproliferative activity and tubulin targeting effects. Eur J Med Chem. 2010; 45(12):5752-66.
DOI: 10.1016/j.ejmech.2010.09.033.
View
15.
Chaudhary V, Venghateri J, Dhaked H, Bhoyar A, Guchhait S, Panda D
. Novel Combretastatin-2-aminoimidazole Analogues as Potent Tubulin Assembly Inhibitors: Exploration of Unique Pharmacophoric Impact of Bridging Skeleton and Aryl Moiety. J Med Chem. 2016; 59(7):3439-51.
DOI: 10.1021/acs.jmedchem.6b00101.
View
16.
Mustafa M, Abdelhamid D, Abdelhafez E, Ibrahim M, Gamal-Eldeen A, Aly O
. Synthesis, antiproliferative, anti-tubulin activity, and docking study of new 1,2,4-triazoles as potential combretastatin analogues. Eur J Med Chem. 2017; 141:293-305.
DOI: 10.1016/j.ejmech.2017.09.063.
View
17.
Sun J, Chen L, Liu C, Wang Z, Zuo D, Pan J
. Synthesis and Biological Evaluations of 1,2-Diaryl Pyrroles as Analogues of Combretastatin A-4. Chem Biol Drug Des. 2015; 86(6):1541-7.
DOI: 10.1111/cbdd.12617.
View
18.
Tsyganov D, Khrustalev V, Konyushkin L, Raihstat M, Firgang S, Semenov R
. 3-(5-)-Amino-o-diarylisoxazoles: regioselective synthesis and antitubulin activity. Eur J Med Chem. 2014; 73:112-25.
DOI: 10.1016/j.ejmech.2013.12.006.
View
19.
Li J, Ma J, Xin Y, Quan Z, Tian Y
. Synthesis and pharmacological evaluation of 2,3-diphenyl acrylonitriles-bearing halogen as selective anticancer agents. Chem Biol Drug Des. 2018; 92(2):1419-1428.
DOI: 10.1111/cbdd.13180.
View
20.
Xin Y, Li J, Zhang H, Ma J, Liu X, Gong G
. Synthesis and characterisation of (Z)-styrylbenzene derivatives as potential selective anticancer agents. J Enzyme Inhib Med Chem. 2018; 33(1):1554-1564.
PMC: 6161602.
DOI: 10.1080/14756366.2018.1513925.
View