» Articles » PMID: 38383890

Photothermal Therapy of Tuberculosis Using Targeting Pre-activated Macrophage Membrane-coated Nanoparticles

Abstract

Conventional antibiotics used for treating tuberculosis (TB) suffer from drug resistance and multiple complications. Here we propose a lesion-pathogen dual-targeting strategy for the management of TB by coating Mycobacterium-stimulated macrophage membranes onto polymeric cores encapsulated with an aggregation-induced emission photothermal agent that is excitable with a 1,064 nm laser. The coated nanoparticles carry specific receptors for Mycobacterium tuberculosis, which enables them to target tuberculous granulomas and internal M. tuberculosis simultaneously. In a mouse model of TB, intravenously injected nanoparticles image individual granulomas in situ in the lungs via signal emission in the near-infrared region IIb, with an imaging resolution much higher than that of clinical computed tomography. With 1,064 nm laser irradiation from outside the thoracic cavity, the photothermal effect generated by these nanoparticles eradicates the targeted M. tuberculosis and alleviates pathological damage and excessive inflammation in the lungs, resulting in a better therapeutic efficacy compared with a combination of first-line antibiotics. This precise photothermal modality that uses dual-targeted imaging in the near-infrared region IIb demonstrates a theranostic strategy for TB management.

Citing Articles

Uptake of Biomimetic Nanovesicles by Granuloma for Photodynamic Therapy of Tuberculosis.

Wang H, Li X, Li P, Feng Y, Wang J, Gao Q ACS Omega. 2025; 10(7):6679-6688.

PMID: 40028123 PMC: 11866195. DOI: 10.1021/acsomega.4c08127.


PhotoChem Interplays: Lighting the Way for Drug Delivery and Diagnosis.

Banstola A, Lin Z, Li Y, Wu M Adv Drug Deliv Rev. 2025; 219:115549.

PMID: 39986440 PMC: 11903148. DOI: 10.1016/j.addr.2025.115549.


Pyridinium Rotor Strategy toward a Robust Photothermal Agent for STING Activation and Multimodal Image-Guided Immunotherapy for Triple-Negative Breast Cancer.

Ning S, Shangguan P, Zhu X, Ou X, Wang K, Suo M J Am Chem Soc. 2025; 147(9):7433-7444.

PMID: 39977833 PMC: 11887044. DOI: 10.1021/jacs.4c15534.


Precision phototherapy and imaging with aggregation-induced emission-based nanoparticles cloaked in macrophage membrane.

Shubhra Q, Fang L, Alam A Med Rev (2021). 2025; 5(1):83-85.

PMID: 39974558 PMC: 11834747. DOI: 10.1515/mr-2024-0041.


Engineered macrophage nanoparticles enhance microwave ablation efficacy in osteosarcoma via targeting the CD47-SIRPα Axis: A novel Biomimetic immunotherapeutic approach.

Ji X, Qian X, Luo G, Yang W, Huang W, Lei Z Bioact Mater. 2025; 47:248-265.

PMID: 39925711 PMC: 11803168. DOI: 10.1016/j.bioactmat.2025.01.012.


References
1.
Khan A, Abbas M, Verma S, Verma S, Rizvi A, Haider F . Genetic Variants and Drug Efficacy in Tuberculosis: A Step toward Personalized Therapy. Glob Med Genet. 2022; 9(2):90-96. PMC: 9192167. DOI: 10.1055/s-0042-1743567. View

2.
Tostmann A, Boeree M, Aarnoutse R, de Lange W, van der Ven A, Dekhuijzen R . Antituberculosis drug-induced hepatotoxicity: concise up-to-date review. J Gastroenterol Hepatol. 2007; 23(2):192-202. DOI: 10.1111/j.1440-1746.2007.05207.x. View

3.
Mane S, Dinda H, Sathyan A, Das Sarma J, Shunmugam R . Increased bioavailability of rifampicin from stimuli-responsive smart nano carrier. ACS Appl Mater Interfaces. 2014; 6(19):16895-902. DOI: 10.1021/am504402b. View

4.
Mei Q, Luo P, Zuo Y, Li J, Zou Q, Li Y . Formulation and in vitro characterization of rifampicin-loaded porous poly (ε-caprolactone) microspheres for sustained skeletal delivery. Drug Des Devel Ther. 2018; 12:1533-1544. PMC: 5987792. DOI: 10.2147/DDDT.S163005. View

5.
Prabhu P, Fernandes T, Chaubey P, Kaur P, Narayanan S, Vk R . Mannose-conjugated chitosan nanoparticles for delivery of Rifampicin to Osteoarticular tuberculosis. Drug Deliv Transl Res. 2021; 11(4):1509-1519. DOI: 10.1007/s13346-021-01003-7. View