6.
Dumbryte I, Narbutis D, Vailionis A, Juodkazis S, Malinauskas M
. Revelation of microcracks as tooth structural element by X-ray tomography and machine learning. Sci Rep. 2022; 12(1):22489.
PMC: 9797571.
DOI: 10.1038/s41598-022-27062-5.
View
7.
Zhang Y, Wang Z
. Concrete Surface Crack Recognition Based on Coordinate Attention Neural Networks. Comput Intell Neurosci. 2022; 2022:7454746.
PMC: 9388252.
DOI: 10.1155/2022/7454746.
View
8.
Metska M, Aartman I, Wesselink P, Ozok A
. Detection of vertical root fractures in vivo in endodontically treated teeth by cone-beam computed tomography scans. J Endod. 2012; 38(10):1344-7.
DOI: 10.1016/j.joen.2012.05.003.
View
9.
Turp J, Gobetti J
. The cracked tooth syndrome: an elusive diagnosis. J Am Dent Assoc. 1996; 127(10):1502-7.
DOI: 10.14219/jada.archive.1996.0060.
View
10.
Abbott P, Leow N
. Predictable management of cracked teeth with reversible pulpitis. Aust Dent J. 2010; 54(4):306-15.
DOI: 10.1111/j.1834-7819.2009.01155.x.
View
11.
Sahin M, Ulutas H, Yuce E, Erkoc M
. Detection and classification of COVID-19 by using faster R-CNN and mask R-CNN on CT images. Neural Comput Appl. 2023; 35(18):13597-13611.
PMC: 10014413.
DOI: 10.1007/s00521-023-08450-y.
View
12.
Shelhamer E, Long J, Darrell T
. Fully Convolutional Networks for Semantic Segmentation. IEEE Trans Pattern Anal Mach Intell. 2016; 39(4):640-651.
DOI: 10.1109/TPAMI.2016.2572683.
View
13.
Son D, Yoon Y, Kwon H, Lee S
. Combined Deep Learning Techniques for Mandibular Fracture Diagnosis Assistance. Life (Basel). 2022; 12(11).
PMC: 9697461.
DOI: 10.3390/life12111711.
View
14.
Hilton T, Funkhouser E, Ferracane J, Gordan V, Huff K, Barna J
. Associations of types of pain with crack-level, tooth-level and patient-level characteristics in posterior teeth with visible cracks: Findings from the National Dental Practice-Based Research Network. J Dent. 2018; 70:67-73.
PMC: 5939962.
DOI: 10.1016/j.jdent.2017.12.014.
View
15.
Vicory J, Chandradevan R, Hernandez-Cerdan P, Huang W, Fox D, Qdais L
. Dental microfracture detection using wavelet features and machine learning. Proc SPIE Int Soc Opt Eng. 2022; 11596.
PMC: 9059627.
DOI: 10.1117/12.2580744.
View
16.
Ruhrnschopf E, Klingenbeck K
. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches. Med Phys. 2011; 38(7):4296-311.
DOI: 10.1118/1.3599033.
View
17.
Oguz C, Yaganoglu M
. Detection of COVID-19 using deep learning techniques and classification methods. Inf Process Manag. 2022; 59(5):103025.
PMC: 9263717.
DOI: 10.1016/j.ipm.2022.103025.
View
18.
Lubisich E, Hilton T, Ferracane J
. Cracked teeth: a review of the literature. J Esthet Restor Dent. 2010; 22(3):158-67.
PMC: 3870147.
DOI: 10.1111/j.1708-8240.2010.00330.x.
View
19.
Kamburoglu K, Murat S, Yuksel S, Cebeci A, Horasan S
. Detection of vertical root fracture using cone-beam computerized tomography: an in vitro assessment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009; 109(2):e74-81.
DOI: 10.1016/j.tripleo.2009.09.005.
View
20.
Wang J, Lv P, Wang H, Shi C
. SAR-U-Net: Squeeze-and-excitation block and atrous spatial pyramid pooling based residual U-Net for automatic liver segmentation in Computed Tomography. Comput Methods Programs Biomed. 2021; 208:106268.
DOI: 10.1016/j.cmpb.2021.106268.
View