» Articles » PMID: 38371454

Bone Targeting Nanoparticles for the Treatment of Osteoporosis

Overview
Publisher Dove Medical Press
Specialty Biotechnology
Date 2024 Feb 19
PMID 38371454
Authors
Affiliations
Soon will be listed here.
Abstract

Osteoporosis (OP) affects millions of people worldwide, especially postmenopausal women and the elderly. Although current available anti-OP agents can show promise in slowing down bone resorption, most are not specifically delivered to the hard tissue, causing significant toxicity. A bone-targeted nanodrug delivery system can reduce side effects and precisely deliver drug candidates to the bone. This review focuses on the progress of bone-targeted nanoparticles in OP therapy. We enumerate the existing OP medications, types of bone-targeted nanoparticles and categorize pairs of the most common bone-targeting functional groups. Finally, we summarize the potential use of bone-targeted nanoparticles in OP treatment. Ongoing research into the development of targeted ligands and nanocarriers will continue to expand the possibilities of OP-targeted therapies into clinical application.

Citing Articles

Apoptosis and cell cycle arrest of bone marrow cells by green-synthesized silver but not albumin nanoparticles.

Eldabousy E, Habbak L, Hyder A Toxicol Rep. 2025; 14:101960.

PMID: 40026477 PMC: 11872133. DOI: 10.1016/j.toxrep.2025.101960.


Investigating the biology of microRNA links to ALDH1A1 reveals candidates for preclinical testing in acute myeloid leukemia.

Vlahopoulos S, Varisli L, Zoumpourlis P, Spandidos D, Zoumpourlis V Int J Oncol. 2024; 65(6).

PMID: 39513593 PMC: 11575927. DOI: 10.3892/ijo.2024.5703.


Osteoporotic osseointegration: therapeutic hallmarks and engineering strategies.

Chen J, Hao Z, Li H, Wang J, Chen T, Wang Y Theranostics. 2024; 14(10):3859-3899.

PMID: 38994021 PMC: 11234277. DOI: 10.7150/thno.96516.


Lymphoid organ-targeted nanomaterials for immunomodulation of cancer, inflammation, and beyond.

Hsu J, Liu P, Song Y, Song W, Saladin R, Peng Y Chem Soc Rev. 2024; 53(15):7657-7680.

PMID: 38958009 PMC: 11334694. DOI: 10.1039/d4cs00421c.

References
1.
Dadfar S, Roemhild K, Drude N, von Stillfried S, Knuchel R, Kiessling F . Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019; 138:302-325. PMC: 7115878. DOI: 10.1016/j.addr.2019.01.005. View

2.
Min Y, Caster J, Eblan M, Wang A . Clinical Translation of Nanomedicine. Chem Rev. 2015; 115(19):11147-90. PMC: 4607605. DOI: 10.1021/acs.chemrev.5b00116. View

3.
Li Y, Ye D, Li M, Ma M, Gu N . Adaptive Materials Based on Iron Oxide Nanoparticles for Bone Regeneration. Chemphyschem. 2018; 19(16):1965-1979. DOI: 10.1002/cphc.201701294. View

4.
Viereck V, Grundker C, Blaschke S, Niederkleine B, Siggelkow H, Frosch K . Raloxifene concurrently stimulates osteoprotegerin and inhibits interleukin-6 production by human trabecular osteoblasts. J Clin Endocrinol Metab. 2003; 88(9):4206-13. DOI: 10.1210/jc.2002-021877. View

5.
Xu X, Liang Y, Li X, Ouyang K, Wang M, Cao T . Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration. Biomaterials. 2020; 269:120539. DOI: 10.1016/j.biomaterials.2020.120539. View