6.
Hayashi S, Okada Y
. Ultrafast superresolution fluorescence imaging with spinning disk confocal microscope optics. Mol Biol Cell. 2015; 26(9):1743-51.
PMC: 4436784.
DOI: 10.1091/mbc.E14-08-1287.
View
7.
Matsumoto G, Shimogori T, Hattori N, Nukina N
. TBK1 controls autophagosomal engulfment of polyubiquitinated mitochondria through p62/SQSTM1 phosphorylation. Hum Mol Genet. 2015; 24(15):4429-42.
DOI: 10.1093/hmg/ddv179.
View
8.
Mounolou J, Jakob H, SLONIMSKI P
. Mitochondrial DNA from yeast "petite" mutants: specific changes in buoyant density corresponding to different cytoplasmic mutations. Biochem Biophys Res Commun. 1966; 24(2):218-24.
DOI: 10.1016/0006-291x(66)90723-6.
View
9.
Vargas J, Hamasaki M, Kawabata T, Youle R, Yoshimori T
. The mechanisms and roles of selective autophagy in mammals. Nat Rev Mol Cell Biol. 2022; 24(3):167-185.
DOI: 10.1038/s41580-022-00542-2.
View
10.
Okamoto H, Thomson J
. Monoclonal antibodies which distinguish certain classes of neuronal and supporting cells in the nervous tissue of the nematode Caenorhabditis elegans. J Neurosci. 1985; 5(3):643-53.
PMC: 6565019.
View
11.
Kuroyanagi H, Yan J, Seki N, Yamanouchi Y, Suzuki Y, Takano T
. Human ULK1, a novel serine/threonine kinase related to UNC-51 kinase of Caenorhabditis elegans: cDNA cloning, expression, and chromosomal assignment. Genomics. 1998; 51(1):76-85.
DOI: 10.1006/geno.1998.5340.
View
12.
Kanki T, Wang K, Cao Y, Baba M, Klionsky D
. Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell. 2009; 17(1):98-109.
PMC: 2746076.
DOI: 10.1016/j.devcel.2009.06.014.
View
13.
Okamoto K, Kondo-Okamoto N, Ohsumi Y
. Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell. 2009; 17(1):87-97.
DOI: 10.1016/j.devcel.2009.06.013.
View
14.
Birgisdottir A, Lamark T, Johansen T
. The LIR motif - crucial for selective autophagy. J Cell Sci. 2013; 126(Pt 15):3237-47.
DOI: 10.1242/jcs.126128.
View
15.
Sasaki T, Sato M
. Degradation of paternal mitochondria via mitophagy. Biochim Biophys Acta Gen Subj. 2021; 1865(6):129886.
DOI: 10.1016/j.bbagen.2021.129886.
View
16.
Tsukada M, Ohsumi Y
. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett. 1993; 333(1-2):169-74.
DOI: 10.1016/0014-5793(93)80398-e.
View
17.
Ravenhill B, Boyle K, von Muhlinen N, Ellison C, Masson G, Otten E
. The Cargo Receptor NDP52 Initiates Selective Autophagy by Recruiting the ULK Complex to Cytosol-Invading Bacteria. Mol Cell. 2019; 74(2):320-329.e6.
PMC: 6477152.
DOI: 10.1016/j.molcel.2019.01.041.
View
18.
Gallo C, Munro E, Rasoloson D, Merritt C, Seydoux G
. Processing bodies and germ granules are distinct RNA granules that interact in C. elegans embryos. Dev Biol. 2008; 323(1):76-87.
DOI: 10.1016/j.ydbio.2008.07.008.
View
19.
Herhaus L, Bhaskara R, Lystad A, Gestal-Mato U, Covarrubias-Pinto A, Bonn F
. TBK1-mediated phosphorylation of LC3C and GABARAP-L2 controls autophagosome shedding by ATG4 protease. EMBO Rep. 2019; 21(1):e48317.
PMC: 6945063.
DOI: 10.15252/embr.201948317.
View
20.
Zhou Z, Liu J, Fu T, Wu P, Peng C, Gong X
. Phosphorylation regulates the binding of autophagy receptors to FIP200 Claw domain for selective autophagy initiation. Nat Commun. 2021; 12(1):1570.
PMC: 7946963.
DOI: 10.1038/s41467-021-21874-1.
View