» Articles » PMID: 38367780

Construction of a PEGDA/chitosan Hydrogel Incorporating Mineralized Copper-doped Mesoporous Silica Nanospheres for Accelerated Bone Regeneration

Overview
Publisher Elsevier
Date 2024 Feb 17
PMID 38367780
Authors
Affiliations
Soon will be listed here.
Abstract

Hydrogels, integrating diverse biocompatible materials, have emerged as promising candidates for bone repair applications. This study presents a double network hydrogel designed for bone tissue engineering, combining poly(ethylene glycol) diacrylate (PEGDA) and chitosan (CS) crosslinked through UV polymerization and ionic crosslinking. Concurrently, copper-doped mesoporous silica nanospheres (Cu-MSNs) were synthesized using a one-pot method. Cu-MSNs underwent additional modification through in-situ biomineralization, resulting in the formation of an apatite layer. Polydopamine was employed to facilitate the deposition of Calcium (Ca) and Phosphate (P) ions on the surface of Cu-MSNs (Cu-MSNs/PDA@CaP). Composite hydrogels were created by integrating varied concentrations of Cu-MSNs/PDA@CaP (25, 50, 100, 150, 200 μg/mL). Characterization unveiled distinctive interconnected porous structures within the composite hydrogel, showcasing a notable 169.6 % enhancement in compressive stress (elevating from 89.01 to 240.19 kPa) compared to pure PEGDA. In vitro biocompatibility experiments illustrated that the composite hydrogel maintained elevated cell viability (up to 106.6 %) and facilitated rapid cell proliferation over 7 days. The hydrogel demonstrated a substantial 57.58 % rise in ALP expression and a surprising 235.27 % increase in ARS staining. Moreover, it significantly enhanced the expression of crucial osteogenic genes, such as run-related transcription factors 2 (RUNX2), collagen 1a1 (Col1a1), and secreted phosphoprotein 1 (Spp1), establishing it as a promising scaffold for bone regeneration. This study shows how Cu-MSNs/PDA@CaP were successfully integrated into a double network hydrogel, resulting in a composite material with good biological responses. Due to its improved characteristics, this composite hydrogel holds the potential for advancing bone regeneration procedures.

Citing Articles

Copper metabolism in osteoarthritis and its relation to oxidative stress and ferroptosis in chondrocytes.

Yu Q, Xiao Y, Guan M, Zhang X, Yu J, Han M Front Mol Biosci. 2024; 11:1472492.

PMID: 39329090 PMC: 11425083. DOI: 10.3389/fmolb.2024.1472492.


The Influence of Tacrolimus on Cellular Morphology, Cellular Viability, Osteogenic Differentiation, and mRNA Expression within Stem Cell Spheroids.

Park W, Han S, Lee H, Kim J, Song H, Park J Medicina (Kaunas). 2024; 60(5).

PMID: 38792884 PMC: 11123479. DOI: 10.3390/medicina60050702.