6.
Wu Z, Yao Q, Zang S, Xie J
. Aggregation-induced emission in luminescent metal nanoclusters. Natl Sci Rev. 2021; 8(6):nwaa208.
PMC: 8288168.
DOI: 10.1093/nsr/nwaa208.
View
7.
Wang F, Wang L, Chen X, Yoon J
. Recent progress in the development of fluorometric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev. 2014; 43(13):4312-24.
DOI: 10.1039/c4cs00008k.
View
8.
Xu Z, Chen X, Kim H, Yoon J
. Sensors for the optical detection of cyanide ion. Chem Soc Rev. 2009; 39(1):127-37.
DOI: 10.1039/b907368j.
View
9.
Bolarinwa I, Orfila C, Morgan M
. Amygdalin content of seeds, kernels and food products commercially-available in the UK. Food Chem. 2014; 152:133-9.
DOI: 10.1016/j.foodchem.2013.11.002.
View
10.
Dagiliene M, Martynaitis V, Krisciuniene V, Krikstolaityte S, Sackus A
. Colorimetric Cyanide Chemosensor Based on 1',3,3',4-Tetrahydrospiro[chromene-2,2'-indole]. ChemistryOpen. 2015; 4(3):363-9.
PMC: 4522186.
DOI: 10.1002/open.201402117.
View
11.
Senthil Rathi B, Kumar P, Show P
. A review on effective removal of emerging contaminants from aquatic systems: Current trends and scope for further research. J Hazard Mater. 2020; 409:124413.
DOI: 10.1016/j.jhazmat.2020.124413.
View
12.
Hagendorfer H, Goessler W
. Separation of chromium(III) and chromium(VI) by ion chromatography and an inductively coupled plasma mass spectrometer as element-selective detector. Talanta. 2008; 76(3):656-61.
DOI: 10.1016/j.talanta.2008.04.010.
View
13.
Desharnais B, Huppe G, Lamarche M, Mireault P, Skinner C
. Cyanide quantification in post-mortem biological matrices by headspace GC-MS. Forensic Sci Int. 2012; 222(1-3):346-51.
DOI: 10.1016/j.forsciint.2012.06.017.
View
14.
Sukato R, Sangpetch N, Palaga T, Jantra S, Vchirawongkwin V, Jongwohan C
. New turn-on fluorescent and colorimetric probe for cyanide detection based on BODIPY-salicylaldehyde and its application in cell imaging. J Hazard Mater. 2016; 314:277-285.
DOI: 10.1016/j.jhazmat.2016.04.001.
View
15.
Long L, Yuan X, Cao S, Han Y, Liu W, Chen Q
. Determination of Cyanide in Water and Food Samples Using an Efficient Naphthalene-Based Ratiometric Fluorescent Probe. ACS Omega. 2019; 4(6):10784-10790.
PMC: 6649237.
DOI: 10.1021/acsomega.9b01308.
View
16.
Nhien P, Chou W, Cuc T, Khang T, Wu C, Thirumalaivasan N
. Multi-Stimuli Responsive FRET Processes of Bifluorophoric AIEgens in an Amphiphilic Copolymer and Its Application to Cyanide Detection in Aqueous Media. ACS Appl Mater Interfaces. 2020; 12(9):10959-10972.
PMC: 7325583.
DOI: 10.1021/acsami.9b21970.
View
17.
Oh J, Jeon I, Kim D, You Y, Baek D, Kang S
. Highly Stable Upconverting Nanocrystal-Polydiacetylenes Nanoplates for Orthogonal Dual Signaling-Based Detection of Cyanide. ACS Appl Mater Interfaces. 2020; 12(4):4934-4943.
DOI: 10.1021/acsami.9b20438.
View
18.
Zeng J, Cao Y, Chen J, Wang X, Yu J, Yu B
. Au@Ag core/shell nanoparticles as colorimetric probes for cyanide sensing. Nanoscale. 2014; 6(17):9939-43.
DOI: 10.1039/c4nr02560a.
View
19.
Bhatt S, Vyas G, Paul P
. Rosmarinic Acid-Capped Silver Nanoparticles for Colorimetric Detection of CN and Redox-Modulated Surface Reaction-Aided Detection of Cr(VI) in Water. ACS Omega. 2022; 7(1):1318-1328.
PMC: 8757454.
DOI: 10.1021/acsomega.1c05946.
View
20.
Bhatt S, Vyas G, Paul P
. Microwave-assisted synthesis of nitrogen-doped carbon dots using prickly pear as the carbon source and its application as a highly selective sensor for Cr(VI) and as a patterning agent. Anal Methods. 2022; 14(3):269-277.
DOI: 10.1039/d1ay01274f.
View