6.
Tanentzap A, Fitch A, Orland C, Emilson E, Yakimovich K, Osterholz H
. Chemical and microbial diversity covary in fresh water to influence ecosystem functioning. Proc Natl Acad Sci U S A. 2019; 116(49):24689-24695.
PMC: 6900631.
DOI: 10.1073/pnas.1904896116.
View
7.
Valle J, Gonsior M, Harir M, Enrich-Prast A, Schmitt-Kopplin P, Bastviken D
. Extensive processing of sediment pore water dissolved organic matter during anoxic incubation as observed by high-field mass spectrometry (FTICR-MS). Water Res. 2017; 129:252-263.
DOI: 10.1016/j.watres.2017.11.015.
View
8.
Skoog A, Arias-Esquivel V
. The effect of induced anoxia and reoxygenation on benthic fluxes of organic carbon, phosphate, iron, and manganese. Sci Total Environ. 2009; 407(23):6085-92.
DOI: 10.1016/j.scitotenv.2009.08.030.
View
9.
Carey C, Hanson P, Thomas R, Gerling A, Hounshell A, Lewis A
. Anoxia decreases the magnitude of the carbon, nitrogen, and phosphorus sink in freshwaters. Glob Chang Biol. 2022; 28(16):4861-4881.
PMC: 9543840.
DOI: 10.1111/gcb.16228.
View
10.
Keiluweit M, Wanzek T, Kleber M, Nico P, Fendorf S
. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat Commun. 2017; 8(1):1771.
PMC: 5701132.
DOI: 10.1038/s41467-017-01406-6.
View
11.
Riedel T, Zak D, Biester H, Dittmar T
. Iron traps terrestrially derived dissolved organic matter at redox interfaces. Proc Natl Acad Sci U S A. 2013; 110(25):10101-5.
PMC: 3690857.
DOI: 10.1073/pnas.1221487110.
View
12.
Sowers T, Holden K, Coward E, Sparks D
. Dissolved Organic Matter Sorption and Molecular Fractionation by Naturally Occurring Bacteriogenic Iron (Oxyhydr)oxides. Environ Sci Technol. 2019; 53(8):4295-4304.
DOI: 10.1021/acs.est.9b00540.
View
13.
Lv J, Zhang S, Wang S, Luo L, Cao D, Christie P
. Molecular-Scale Investigation with ESI-FT-ICR-MS on Fractionation of Dissolved Organic Matter Induced by Adsorption on Iron Oxyhydroxides. Environ Sci Technol. 2016; 50(5):2328-36.
DOI: 10.1021/acs.est.5b04996.
View
14.
Schiff S, Tsuji J, Wu L, Venkiteswaran J, Molot L, Elgood R
. Millions of Boreal Shield Lakes can be used to Probe Archaean Ocean Biogeochemistry. Sci Rep. 2017; 7:46708.
PMC: 5406836.
DOI: 10.1038/srep46708.
View
15.
Anderson N, Heathcote A, Engstrom D
. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci Adv. 2020; 6(16):eaaw2145.
PMC: 7159926.
DOI: 10.1126/sciadv.aaw2145.
View
16.
Jane S, Hansen G, Kraemer B, Leavitt P, Mincer J, North R
. Widespread deoxygenation of temperate lakes. Nature. 2021; 594(7861):66-70.
DOI: 10.1038/s41586-021-03550-y.
View
17.
Gomez-Gener L, Lupon A, Laudon H, Sponseller R
. Drought alters the biogeochemistry of boreal stream networks. Nat Commun. 2020; 11(1):1795.
PMC: 7156665.
DOI: 10.1038/s41467-020-15496-2.
View
18.
Lapierre J, Guillemette F, Berggren M, A Del Giorgio P
. Increases in terrestrially derived carbon stimulate organic carbon processing and CO₂ emissions in boreal aquatic ecosystems. Nat Commun. 2013; 4:2972.
DOI: 10.1038/ncomms3972.
View
19.
Drake T, Van Oost K, Barthel M, Bauters M, Hoyt A, Podgorski D
. Mobilization of aged and biolabile soil carbon by tropical deforestation. Nat Geosci. 2019; 12(7):541-546.
PMC: 6650295.
DOI: 10.1038/s41561-019-0384-9.
View
20.
Weyhenmeyer G, Prairie Y, Tranvik L
. Browning of boreal freshwaters coupled to carbon-iron interactions along the aquatic continuum. PLoS One. 2014; 9(2):e88104.
PMC: 3914935.
DOI: 10.1371/journal.pone.0088104.
View