6.
Drira M, Saibi W, Amara I, Masmoudi K, Hanin M, Brini F
. Wheat dehydrin K-segments ensure bacterial stress tolerance, antiaggregation and antimicrobial effects. Appl Biochem Biotechnol. 2015; 175(7):3310-21.
DOI: 10.1007/s12010-015-1502-9.
View
7.
Drira M, Saibi W, Brini F, Gargouri A, Masmoudi K, Hanin M
. The K-segments of the wheat dehydrin DHN-5 are essential for the protection of lactate dehydrogenase and β-glucosidase activities in vitro. Mol Biotechnol. 2012; 54(2):643-50.
DOI: 10.1007/s12033-012-9606-8.
View
8.
Goyal K, Walton L, Tunnacliffe A
. LEA proteins prevent protein aggregation due to water stress. Biochem J. 2005; 388(Pt 1):151-7.
PMC: 1186703.
DOI: 10.1042/BJ20041931.
View
9.
Graether S, Boddington K
. Disorder and function: a review of the dehydrin protein family. Front Plant Sci. 2014; 5:576.
PMC: 4215689.
DOI: 10.3389/fpls.2014.00576.
View
10.
Halder T, Agarwal T, Ray S
. Isolation, cloning, and characterization of a novel Sorghum dehydrin (SbDhn2) protein. Protoplasma. 2015; 253(6):1475-1488.
DOI: 10.1007/s00709-015-0901-7.
View
11.
Halder T, Upadhyaya G, Ray S
. YSK Type Dehydrin () from Showed Improved Protection under High Temperature and Osmotic Stress Condition. Front Plant Sci. 2017; 8:918.
PMC: 5447703.
DOI: 10.3389/fpls.2017.00918.
View
12.
Hao Y, Hao M, Cui Y, Kong L, Wang H
. Genome-wide survey of the dehydrin genes in bread wheat (Triticum aestivum L.) and its relatives: identification, evolution and expression profiling under various abiotic stresses. BMC Genomics. 2022; 23(1):73.
PMC: 8784006.
DOI: 10.1186/s12864-022-08317-x.
View
13.
Hara M, Endo T, Kamiya K, Kameyama A
. The role of hydrophobic amino acids of K-segments in the cryoprotection of lactate dehydrogenase by dehydrins. J Plant Physiol. 2017; 210:18-23.
DOI: 10.1016/j.jplph.2016.12.003.
View
14.
Huang Z, Zhong X, He J, Jin S, Guo H, Yu X
. Genome-Wide Identification, Characterization, and Stress-Responsive Expression Profiling of Genes Encoding LEA (Late Embryogenesis Abundant) Proteins in Moso Bamboo (Phyllostachys edulis). PLoS One. 2016; 11(11):e0165953.
PMC: 5102402.
DOI: 10.1371/journal.pone.0165953.
View
15.
Hughes S, Graether S
. Cryoprotective mechanism of a small intrinsically disordered dehydrin protein. Protein Sci. 2010; 20(1):42-50.
PMC: 3047060.
DOI: 10.1002/pro.534.
View
16.
Hughes S, Schart V, Malcolmson J, Hogarth K, Martynowicz D, Tralman-Baker E
. The importance of size and disorder in the cryoprotective effects of dehydrins. Plant Physiol. 2013; 163(3):1376-86.
PMC: 3813657.
DOI: 10.1104/pp.113.226803.
View
17.
Koag M, Wilkens S, Fenton R, Resnik J, Vo E, Close T
. The K-segment of maize DHN1 mediates binding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol. 2009; 150(3):1503-14.
PMC: 2705017.
DOI: 10.1104/pp.109.136697.
View
18.
Rahman L, Chen L, Nazim S, Bamm V, Yaish M, Moffatt B
. Interactions of intrinsically disordered Thellungiella salsuginea dehydrins TsDHN-1 and TsDHN-2 with membranes - synergistic effects of lipid composition and temperature on secondary structure. Biochem Cell Biol. 2010; 88(5):791-807.
DOI: 10.1139/o10-026.
View
19.
Reyes J, Campos F, Wei H, Arora R, Yang Y, Karlson D
. Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell Environ. 2008; 31(12):1781-90.
DOI: 10.1111/j.1365-3040.2008.01879.x.
View
20.
Rosales R, Romero I, Escribano M, Merodio C, Sanchez-Ballesta M
. The crucial role of Φ- and K-segments in the in vitro functionality of Vitis vinifera dehydrin DHN1a. Phytochemistry. 2014; 108:17-25.
DOI: 10.1016/j.phytochem.2014.10.006.
View