6.
Ran X, Zhao F, Wang Y, Liu J, Zhuang Y, Ye L
. Plant Regulomics: a data-driven interface for retrieving upstream regulators from plant multi-omics data. Plant J. 2019; 101(1):237-248.
DOI: 10.1111/tpj.14526.
View
7.
Tsuda K, Kurata N, Ohyanagi H, Hake S
. Genome-wide study of KNOX regulatory network reveals brassinosteroid catabolic genes important for shoot meristem function in rice. Plant Cell. 2014; 26(9):3488-500.
PMC: 4213158.
DOI: 10.1105/tpc.114.129122.
View
8.
Chen Q, Payyavula R, Chen L, Zhang J, Zhang C, Turgeon R
. mRNA is synthesized in specialized companion cells in and Maryland Mammoth tobacco leaf veins. Proc Natl Acad Sci U S A. 2018; 115(11):2830-2835.
PMC: 5856545.
DOI: 10.1073/pnas.1719455115.
View
9.
Brambilla V, Fornara F
. Molecular control of flowering in response to day length in rice. J Integr Plant Biol. 2013; 55(5):410-8.
DOI: 10.1111/jipb.12033.
View
10.
He Z, Zhang H, Gao S, Lercher M, Chen W, Hu S
. Evolview v2: an online visualization and management tool for customized and annotated phylogenetic trees. Nucleic Acids Res. 2016; 44(W1):W236-41.
PMC: 4987921.
DOI: 10.1093/nar/gkw370.
View
11.
Jin J, Tian F, Yang D, Meng Y, Kong L, Luo J
. PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2016; 45(D1):D1040-D1045.
PMC: 5210657.
DOI: 10.1093/nar/gkw982.
View
12.
Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z
. Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev. 2004; 18(8):926-36.
PMC: 395851.
DOI: 10.1101/gad.1189604.
View
13.
Goretti D, Silvestre M, Collani S, Langenecker T, Mendez C, Madueno F
. TERMINAL FLOWER1 Functions as a Mobile Transcriptional Cofactor in the Shoot Apical Meristem. Plant Physiol. 2020; 182(4):2081-2095.
PMC: 7140938.
DOI: 10.1104/pp.19.00867.
View
14.
Shi J, Dong A, Shen W
. Epigenetic regulation of rice flowering and reproduction. Front Plant Sci. 2015; 5:803.
PMC: 4309181.
DOI: 10.3389/fpls.2014.00803.
View
15.
Jin S, Jung H, Chung K, Lee J, Ahn J
. FLOWERING LOCUS T has higher protein mobility than TWIN SISTER OF FT. J Exp Bot. 2015; 66(20):6109-17.
PMC: 4588878.
DOI: 10.1093/jxb/erv326.
View
16.
Nelson B, Cai X, Nebenfuhr A
. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 2007; 51(6):1126-36.
DOI: 10.1111/j.1365-313X.2007.03212.x.
View
17.
Lou Y, Xu X, Zhu J, Gu J, Blackmore S, Yang Z
. The tapetal AHL family protein TEK determines nexine formation in the pollen wall. Nat Commun. 2014; 5:3855.
PMC: 4024750.
DOI: 10.1038/ncomms4855.
View
18.
Andres F, Coupland G
. The genetic basis of flowering responses to seasonal cues. Nat Rev Genet. 2012; 13(9):627-39.
DOI: 10.1038/nrg3291.
View
19.
Street I, Shah P, Smith A, Avery N, Neff M
. The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis. Plant J. 2007; 54(1):1-14.
DOI: 10.1111/j.1365-313X.2007.03393.x.
View
20.
Chou K, Shen H
. Cell-PLoc: a package of Web servers for predicting subcellular localization of proteins in various organisms. Nat Protoc. 2008; 3(2):153-62.
DOI: 10.1038/nprot.2007.494.
View