» Articles » PMID: 38330826

A Review of Traditional Chinese Medicine Diagnosis Using Machine Learning: Inspection, Auscultation-olfaction, Inquiry, and Palpation

Overview
Journal Comput Biol Med
Publisher Elsevier
Date 2024 Feb 8
PMID 38330826
Authors
Affiliations
Soon will be listed here.
Abstract

Traditional Chinese medicine (TCM) is an essential part of the Chinese medical system and is recognized by the World Health Organization as an important alternative medicine. As an important part of TCM, TCM diagnosis is a method to understand a patient's illness, analyze its state, and identify syndromes. In the long-term clinical diagnosis practice of TCM, four fundamental and effective diagnostic methods of inspection, auscultation-olfaction, inquiry, and palpation (IAOIP) have been formed. However, the diagnostic information in TCM is diverse, and the diagnostic process depends on doctors' experience, which is subject to a high-level subjectivity. At present, the research on the automated diagnosis of TCM based on machine learning is booming. Machine learning, which includes deep learning, is an essential part of artificial intelligence (AI), which provides new ideas for the objective and AI-related research of TCM. This paper aims to review and summarize the current research status of machine learning in TCM diagnosis. First, we review some key factors for the application of machine learning in TCM diagnosis, including data, data preprocessing, machine learning models, and evaluation metrics. Second, we review and summarize the research and applications of machine learning methods in TCM IAOIP and the synthesis of the four diagnostic methods. Finally, we discuss the challenges and research directions of using machine learning methods for TCM diagnosis.

Citing Articles

Methods for identifying health status from routinely collected health data: An overview.

Liu M, Deng K, Wang M, He Q, Xu J, Li G Integr Med Res. 2025; 14(1):101100.

PMID: 39897572 PMC: 11786076. DOI: 10.1016/j.imr.2024.101100.


Machine Learning Research Trends in Traditional Chinese Medicine: A Bibliometric Review.

Lim J, Li J, Zhou M, Xiao X, Xu Z Int J Gen Med. 2024; 17:5397-5414.

PMID: 39588057 PMC: 11586268. DOI: 10.2147/IJGM.S495663.


The Relationship Between Computerized Face and Tongue Image Segmentation and Metabolic Parameters in Patients with Type 2 Diabetes Based on Machine Learning.

Wen S, Li Y, Xu C, Jin J, Xu Z, Yuan Y Diabetes Metab Syndr Obes. 2024; 17:4049-4068.

PMID: 39492959 PMC: 11531271. DOI: 10.2147/DMSO.S491897.


Predicting TCM patterns in PCOS patients: An exploration of feature selection methods and multi-label machine learning models.

Lim J, Li J, Feng X, Feng L, Xiao X, Zhou M Heliyon. 2024; 10(15):e35283.

PMID: 39166018 PMC: 11334618. DOI: 10.1016/j.heliyon.2024.e35283.