6.
Cassileth B
. Lycium (Lycium barbarum). Oncology (Williston Park). 2011; 24(14):1353.
View
7.
Xiao X, Ren W, Zhang N, Bing T, Liu X, Zhao Z
. Comparative Study of the Chemical Constituents and Bioactivities of the Extracts from Fruits, Leaves and Root Barks of . Molecules. 2019; 24(8).
PMC: 6514792.
DOI: 10.3390/molecules24081585.
View
8.
Zhao X, Guo S, Lu Y, Zhang F, Yan H, Wang H
. [Analysis of water-soluble nutrients in Lycium barbarum leaves and differences between different producing areas]. Zhongguo Zhong Yao Za Zhi. 2021; 46(8):2084-2093.
DOI: 10.19540/j.cnki.cjcmm.20200701.201.
View
9.
Liu J, Li Y, Pu Q, Qiu H, Di D, Cao Y
. A polysaccharide from Lycium barbarum L.: Structure and protective effects against oxidative stress and high-glucose-induced apoptosis in ARPE-19 cells. Int J Biol Macromol. 2021; 201:111-120.
DOI: 10.1016/j.ijbiomac.2021.12.139.
View
10.
Bai C, Yang J, Cao B, Xue Y, Gao P, Liang H
. Growth years and post-harvest processing methods have critical roles on the contents of medicinal active ingredients of . Ind Crops Prod. 2020; 158:112985.
PMC: 7604031.
DOI: 10.1016/j.indcrop.2020.112985.
View
11.
Lee S, An M, Hwang H, Yoon J, Cho J
. Antioxidant Effect of Leaf through Inflammatory and Endoplasmic Reticulum Stress Mechanism. Antioxidants (Basel). 2020; 10(1).
PMC: 7823746.
DOI: 10.3390/antiox10010020.
View
12.
Mocan A, Zengin G, Simirgiotis M, Schafberg M, Mollica A, Vodnar D
. Functional constituents of wild and cultivated Goji (L. barbarum L.) leaves: phytochemical characterization, biological profile, and computational studies. J Enzyme Inhib Med Chem. 2017; 32(1):153-168.
PMC: 6009880.
DOI: 10.1080/14756366.2016.1243535.
View
13.
Xiao Z, Deng Q, Zhou W, Zhang Y
. Immune activities of polysaccharides isolated from Lycium barbarum L. What do we know so far?. Pharmacol Ther. 2021; 229:107921.
DOI: 10.1016/j.pharmthera.2021.107921.
View
14.
Zhao X, Guo S, Yan H, Lu Y, Zhang F, Qian D
. Analysis of phenolic acids and flavonoids in leaves of Lycium barbarum from different habitats by ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. Biomed Chromatogr. 2019; 33(8):e4552.
DOI: 10.1002/bmc.4552.
View
15.
Lu Y, Guo S, Zhang F, Yan H, Qian D, Shang E
. Nutritional components characterization of Goji berries from different regions in China. J Pharm Biomed Anal. 2020; 195:113859.
DOI: 10.1016/j.jpba.2020.113859.
View
16.
Vidovic B, Milincic D, Marcetic M, Djuris J, Ilic T, Kostic A
. Health Benefits and Applications of Goji Berries in Functional Food Products Development: A Review. Antioxidants (Basel). 2022; 11(2).
PMC: 8868247.
DOI: 10.3390/antiox11020248.
View
17.
Liu S, Lin J, Hu C, Shen B, Chen T, Chang Y
. Phenolic compositions and antioxidant attributes of leaves and stems from three inbred varieties of Lycium chinense Miller harvested at various times. Food Chem. 2016; 215:284-91.
DOI: 10.1016/j.foodchem.2016.06.072.
View
18.
Niu Y, Liao J, Zhou H, Wang C, Wang L, Fan Y
. Flavonoids from Leaves Exhibit Anti-Aging Effects through the Redox-Modulation. Molecules. 2022; 27(15).
PMC: 9370597.
DOI: 10.3390/molecules27154952.
View
19.
Wang Y, Liang X, Li Y, Fan Y, Li Y, Cao Y
. Changes in Metabolome and Nutritional Quality of Fruits from Three Typical Growing Areas of China as Revealed by Widely Targeted Metabolomics. Metabolites. 2020; 10(2).
PMC: 7073637.
DOI: 10.3390/metabo10020046.
View
20.
Chen K, Huang G, Li Y, Zhang X, Lei Y, Li Y
. Illumina MiSeq Sequencing Reveals Correlations among Fruit Ingredients, Environmental Factors, and AMF Communities in Three Producing Regions of China. Microbiol Spectr. 2022; 10(2):e0229321.
PMC: 8941938.
DOI: 10.1128/spectrum.02293-21.
View