6.
Amin H, Marshall I, Bertelsen R, Wouters I, Schlunssen V, Sigsgaard T
. Optimization of bacterial DNA and endotoxin extraction from settled airborne dust. Sci Total Environ. 2022; 857(Pt 2):159455.
DOI: 10.1016/j.scitotenv.2022.159455.
View
7.
Herrera A, Cockell C
. Exploring microbial diversity in volcanic environments: a review of methods in DNA extraction. J Microbiol Methods. 2007; 70(1):1-12.
DOI: 10.1016/j.mimet.2007.04.005.
View
8.
Primm T, Lucero C, Falkinham 3rd J
. Health impacts of environmental mycobacteria. Clin Microbiol Rev. 2004; 17(1):98-106.
PMC: 321467.
DOI: 10.1128/CMR.17.1.98-106.2004.
View
9.
Mahalanabis M, Al-Muayad H, Kulinski M, Altman D, Klapperich C
. Cell lysis and DNA extraction of gram-positive and gram-negative bacteria from whole blood in a disposable microfluidic chip. Lab Chip. 2009; 9(19):2811-7.
DOI: 10.1039/b905065p.
View
10.
Bolyen E, Rideout J, Dillon M, Bokulich N, Abnet C, Al-Ghalith G
. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019; 37(8):852-857.
PMC: 7015180.
DOI: 10.1038/s41587-019-0209-9.
View
11.
Song M, Wang J, Wang Y, Hu R, Wang L, Guo Z
. Response mechanism of meiofaunal communities to multi-type of artificial reef habitats from the perspective of high-throughput sequencing technology. Sci Total Environ. 2022; 863:160927.
DOI: 10.1016/j.scitotenv.2022.160927.
View
12.
Hurt Jr R, Robeson 2nd M, Shakya M, Moberly J, Vishnivetskaya T, Gu B
. Improved yield of high molecular weight DNA coincides with increased microbial diversity access from iron oxide cemented sub-surface clay environments. PLoS One. 2014; 9(7):e102826.
PMC: 4102596.
DOI: 10.1371/journal.pone.0102826.
View
13.
Medina Caro D, Horstmann L, Ganzert L, Oses R, Friedl T, Wagner D
. An improved method for intracellular DNA (iDNA) recovery from terrestrial environments. Microbiologyopen. 2023; 12(3):e1369.
PMC: 10291228.
DOI: 10.1002/mbo3.1369.
View
14.
Michan C, Blasco J, Alhama J
. High-throughput molecular analyses of microbiomes as a tool to monitor the wellbeing of aquatic environments. Microb Biotechnol. 2021; 14(3):870-885.
PMC: 8085945.
DOI: 10.1111/1751-7915.13763.
View
15.
Hwang C, Ling F, Andersen G, LeChevallier M, Liu W
. Evaluation of methods for the extraction of DNA from drinking water distribution system biofilms. Microbes Environ. 2011; 27(1):9-18.
PMC: 4036026.
DOI: 10.1264/jsme2.me11132.
View
16.
Echeverria-Beirute F, Varela-Benavides I, Jimenez-Madrigal J, Carvajal-Chacon M, Guzman-Hernandez T
. eDNA extraction protocol for metagenomic studies in tropical soils. Biotechniques. 2021; 71(6):580-586.
DOI: 10.2144/btn-2021-0057.
View
17.
Yuan J, Li M, Lin S
. An Improved DNA Extraction Method for Efficient and Quantitative Recovery of Phytoplankton Diversity in Natural Assemblages. PLoS One. 2015; 10(7):e0133060.
PMC: 4517865.
DOI: 10.1371/journal.pone.0133060.
View
18.
Alibrandi A, di Primio R, Bartholomaus A, Kallmeyer J
. A modified isooctane-based DNA extraction method from crude oil. mLife. 2024; 2(3):328-338.
PMC: 10989908.
DOI: 10.1002/mlf2.12081.
View
19.
Howarth A, Drummond B, Wasef S, Matheson C
. An assessment of DNA extraction methods from blood-stained soil in forensic science. Forensic Sci Int. 2022; 341:111502.
DOI: 10.1016/j.forsciint.2022.111502.
View
20.
Callahan B, McMurdie P, Rosen M, Han A, Johnson A, Holmes S
. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Methods. 2016; 13(7):581-3.
PMC: 4927377.
DOI: 10.1038/nmeth.3869.
View