» Articles » PMID: 38305397

Potential Antidiabetic Activity of β-sitosterol from Modulation of Peroxisome Proliferator-activated Receptor Gamma (PPARγ)

Overview
Specialty Chemistry
Date 2024 Feb 2
PMID 38305397
Authors
Affiliations
Soon will be listed here.
Abstract

Aim: To evaluate the antidiabetic potential of β-sitosterol from Zingiber roseum.

Background: Diabetes mellitus is a cluster of metabolic disorders, and 90% of diabetic patients are affected with Type II diabetes (DM2). For the treatment of DM2, thiazolidinedione drugs (TZDs) were proposed, but recent studies have shown that TZDs have several detrimental effects, such as weight gain, kidney enlargement (hypertrophy), fluid retention, increased risk of bone fractures, and potential harm to the liver (hepatotoxicity). That is why a new molecule is needed to treat DM2.

Objective: The current research aimed to assess the efficacy of β-Sitosterol from methanolic extract of Zingiber roseum in managing diabetes PPARγ modulation.

Methods: Zingiber roseum was extracted using methanol, and GC-MS was employed to analyze the extract. Through homology modeling, PPARγ structure was predicted. Molecular docking, MD simulation, free binding energies, QSAR, ADMET, and bioactivity and toxicity scores were all used during the in-depth computer-based research.

Results: Clinically, agonists of synthetic thiazolidinedione (TZDs) have been used therapeutically to treat DM2, but these TZDs are associated with significant risks. Hence, GC-MS identified phytochemicals to search for a new PPAR-γ agonist. Based on the investigation, β-sitosterol was found to have a higher binding affinity (-8.9 kcal/mol) than standard drugs. MD simulations and MMGBSA analysis also demonstrated that β-sitosterol bound to the PPAR-γ active site stably.

Conclusion: It can be concluded that β-sitosterol from attenuates Type-II diabetes by modulating PPARγ activity.

Citing Articles

and Studies of β-Sitosterol Nanoparticles as a Potential Therapy for Isoprenaline-Induced Cognitive Impairment in Myocardial Infarction, Targeting Myeloperoxidase.

Tallapalli P, Reddy Y, Yaraguppi D, Matangi S, Challa R, Vallamkonda B Pharmaceuticals (Basel). 2024; 17(8).

PMID: 39204198 PMC: 11359034. DOI: 10.3390/ph17081093.

References
1.
Bosch X, Alfonso F, Bermejo J . [Diabetes and cardiovascular disease. A comprehensive insight to the new epidemic of the 21st century]. Rev Esp Cardiol. 2002; 55(5):525-7. DOI: 10.1016/s0300-8932(02)76645-1. View

2.
Bermudez-Pirela V, Cano C, Medina M, Souki A, Lemus M, Leal E . Metformin plus low-dose glimeperide significantly improves Homeostasis Model Assessment for insulin resistance (HOMA(IR)) and beta-cell function (HOMA(beta-cell)) without hyperinsulinemia in patients with type 2 diabetes mellitus. Am J Ther. 2007; 14(2):194-202. DOI: 10.1097/01.pap.0000249909.54047.0e. View

3.
Bermudez V, Finol F, Parra N, Parra M, Perez A, Penaranda L . PPAR-gamma agonists and their role in type 2 diabetes mellitus management. Am J Ther. 2010; 17(3):274-83. DOI: 10.1097/MJT.0b013e3181c08081. View

4.
Copps K, White M . Regulation of insulin sensitivity by serine/threonine phosphorylation of insulin receptor substrate proteins IRS1 and IRS2. Diabetologia. 2012; 55(10):2565-2582. PMC: 4011499. DOI: 10.1007/s00125-012-2644-8. View

5.
Dong X, Park S, Lin X, Copps K, Yi X, White M . Irs1 and Irs2 signaling is essential for hepatic glucose homeostasis and systemic growth. J Clin Invest. 2005; 116(1):101-14. PMC: 1319221. DOI: 10.1172/JCI25735. View