6.
Rowland L, Shneider N
. Amyotrophic lateral sclerosis. N Engl J Med. 2001; 344(22):1688-700.
DOI: 10.1056/NEJM200105313442207.
View
7.
Kaganovich D, Kopito R, Frydman J
. Misfolded proteins partition between two distinct quality control compartments. Nature. 2008; 454(7208):1088-95.
PMC: 2746971.
DOI: 10.1038/nature07195.
View
8.
Lobsiger C, Cleveland D
. Glial cells as intrinsic components of non-cell-autonomous neurodegenerative disease. Nat Neurosci. 2007; 10(11):1355-60.
PMC: 3110080.
DOI: 10.1038/nn1988.
View
9.
Park J, Jang H, Lee I, Oh H, Choi E, Rhim H
. Amyotrophic lateral sclerosis-related mutant superoxide dismutase 1 aggregates inhibit 14-3-3-mediated cell survival by sequestration into the JUNQ compartment. Hum Mol Genet. 2017; 26(18):3615-3629.
DOI: 10.1093/hmg/ddx250.
View
10.
Rajagopalan S, Sade R, Townsley F, Fersht A
. Mechanistic differences in the transcriptional activation of p53 by 14-3-3 isoforms. Nucleic Acids Res. 2009; 38(3):893-906.
PMC: 2817464.
DOI: 10.1093/nar/gkp1041.
View
11.
Gidalevitz T, Krupinski T, Garcia S, Morimoto R
. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. PLoS Genet. 2009; 5(3):e1000399.
PMC: 2642731.
DOI: 10.1371/journal.pgen.1000399.
View
12.
Abhinav K, Stanton B, Johnston C, Hardstaff J, Orrell R, Howard R
. Amyotrophic lateral sclerosis in South-East England: a population-based study. The South-East England register for amyotrophic lateral sclerosis (SEALS Registry). Neuroepidemiology. 2007; 29(1-2):44-8.
DOI: 10.1159/000108917.
View
13.
Harraz M, Marden J, Zhou W, Zhang Y, Williams A, Sharov V
. SOD1 mutations disrupt redox-sensitive Rac regulation of NADPH oxidase in a familial ALS model. J Clin Invest. 2008; 118(2):659-70.
PMC: 2213375.
DOI: 10.1172/JCI34060.
View
14.
Matsumoto G, Kim S, Morimoto R
. Huntingtin and mutant SOD1 form aggregate structures with distinct molecular properties in human cells. J Biol Chem. 2005; 281(7):4477-85.
DOI: 10.1074/jbc.M509201200.
View
15.
Bell J, Haak A, Wade S, Sun Y, Neubig R, Larsen S
. Design and synthesis of tag-free photoprobes for the identification of the molecular target for CCG-1423, a novel inhibitor of the Rho/MKL1/SRF signaling pathway. Beilstein J Org Chem. 2013; 9:966-73.
PMC: 3678708.
DOI: 10.3762/bjoc.9.111.
View
16.
Cleveland D, Laing N, Hurse P, Brown Jr R
. Toxic mutants in Charcot's sclerosis. Nature. 1995; 378(6555):342-3.
DOI: 10.1038/378342a0.
View
17.
Vance C, Rogelj B, Hortobagyi T, De Vos K, Nishimura A, Sreedharan J
. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009; 323(5918):1208-1211.
PMC: 4516382.
DOI: 10.1126/science.1165942.
View
18.
Seneviratne U, Huang Z, Am Ende C, Butler T, Cleary L, Dresselhaus E
. Photoaffinity Labeling and Quantitative Chemical Proteomics Identify LXRβ as the Functional Target of Enhancers of Astrocytic apoE. Cell Chem Biol. 2020; 28(2):148-157.e7.
DOI: 10.1016/j.chembiol.2020.09.002.
View
19.
Keller A, Nesvizhskii A, Kolker E, Aebersold R
. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem. 2002; 74(20):5383-92.
DOI: 10.1021/ac025747h.
View
20.
Eirich J, Orth R, Sieber S
. Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells. J Am Chem Soc. 2011; 133(31):12144-53.
DOI: 10.1021/ja2039979.
View