» Articles » PMID: 38283614

Water-soluble Chromenylium Dyes for Shortwave Infrared Imaging in Mice

Overview
Journal Chem
Publisher Elsevier
Date 2024 Jan 29
PMID 38283614
Authors
Affiliations
Soon will be listed here.
Abstract

imaging using shortwave infrared light (SWIR, 1000-2000 nm) benefits from deeper penetration and higher resolution compared to using visible and near-infrared wavelengths. However, the development of biocompatible SWIR contrast agents remains challenging. Despite recent advancements, small molecule SWIR fluorophores are often hindered by their significant hydrophobicity. We report a platform for generating a panel of soluble and functional dyes for SWIR imaging by late-stage functionalization of a versatile fluorophore intermediate, affording water-soluble dyes with bright SWIR fluorescence in serum. Specifically, a tetra-sulfonate derivative enables clear video-rate imaging of vasculature with only 0.05 nmol dye, and a tetra-ammonium dye shows strong cellular retention for tracking of tumor growth. Additionally, incorporation of phosphonate functionality enables imaging of bone in awake mice. This modular design provides insights for facile derivatization of existing SWIR fluorophores to introduce both solubility and bioactivity towards bioimaging.

Citing Articles

Stars by the Pocketful.

Lavis C, Lavis L ACS Cent Sci. 2025; 11(2):183-186.

PMID: 40028353 PMC: 11868956. DOI: 10.1021/acscentsci.5c00223.


Chromenylium Star Polymers: Merging Water Solubility and Stealth Properties with Shortwave Infrared Emissive Fluorophores.

Mobley E, Lin E, Sletten E ACS Cent Sci. 2025; 11(2):208-218.

PMID: 40028351 PMC: 11869135. DOI: 10.1021/acscentsci.4c01570.


Compartmentalizing Donor-Acceptor Stenhouse Adducts for Structure-Property Relationship Analysis.

Reyes C, Karr A, Ramsperger C, K A, Lee H, Picazo E J Am Chem Soc. 2024; 147(1):10-26.

PMID: 39729546 PMC: 11726581. DOI: 10.1021/jacs.4c14198.


Engineering Central Substitutions in Heptamethine Dyes for Improved Fluorophore Performance.

Guo L, Yang M, Dong B, Lewman S, Van Horn A, Jia S JACS Au. 2024; 4(8):3007-3017.

PMID: 39211623 PMC: 11350720. DOI: 10.1021/jacsau.4c00343.


A Review of Image Sensors Used in Near-Infrared and Shortwave Infrared Fluorescence Imaging.

Zhu B, Jonathan H Sensors (Basel). 2024; 24(11).

PMID: 38894330 PMC: 11175340. DOI: 10.3390/s24113539.

References
1.
Wang L, Xia Q, Hou M, Yan C, Xu Y, Qu J . A photostable cationic fluorophore for long-term bioimaging. J Mater Chem B. 2020; 5(46):9183-9188. DOI: 10.1039/c7tb02668d. View

2.
Zaheer A, Lenkinski R, Mahmood A, Jones A, Cantley L, Frangioni J . In vivo near-infrared fluorescence imaging of osteoblastic activity. Nat Biotechnol. 2001; 19(12):1148-54. DOI: 10.1038/nbt1201-1148. View

3.
Li B, Zhao M, Feng L, Dou C, Ding S, Zhou G . Organic NIR-II molecule with long blood half-life for in vivo dynamic vascular imaging. Nat Commun. 2020; 11(1):3102. PMC: 7303218. DOI: 10.1038/s41467-020-16924-z. View

4.
Lei Z, Zhang F . Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew Chem Int Ed Engl. 2020; 60(30):16294-16308. DOI: 10.1002/anie.202007040. View

5.
He Y, Wang S, Yu P, Yan K, Ming J, Yao C . NIR-II cell endocytosis-activated fluorescent probes for high-contrast bioimaging diagnostics. Chem Sci. 2021; 12(31):10474-10482. PMC: 8356747. DOI: 10.1039/d1sc02763h. View