6.
Celikkin N, Mastrogiacomo S, Dou W, Heerschap A, Oosterwijk E, Walboomers X
. In vitro and in vivo assessment of a 3D printable gelatin methacrylate hydrogel for bone regeneration applications. J Biomed Mater Res B Appl Biomater. 2022; 110(9):2133-2145.
DOI: 10.1002/jbm.b.35067.
View
7.
Negishi J, Funamoto S, Kimura T, Nam K, Higami T, Kishida A
. Porcine radial artery decellularization by high hydrostatic pressure. J Tissue Eng Regen Med. 2012; 9(11):E144-51.
DOI: 10.1002/term.1662.
View
8.
Noshadi I, Hong S, Sullivan K, Sani E, Portillo-Lara R, Tamayol A
. In vitro and in vivo analysis of visible light crosslinkable gelatin methacryloyl (GelMA) hydrogels. Biomater Sci. 2017; 5(10):2093-2105.
PMC: 5614854.
DOI: 10.1039/c7bm00110j.
View
9.
Ahn H, Ju Y, Takahashi H, Williams D, Yoo J, Lee S
. Engineered small diameter vascular grafts by combining cell sheet engineering and electrospinning technology. Acta Biomater. 2015; 16:14-22.
DOI: 10.1016/j.actbio.2015.01.030.
View
10.
Alexandre N, Ribeiro J, Gartner A, Pereira T, Amorim I, Fragoso J
. Biocompatibility and hemocompatibility of polyvinyl alcohol hydrogel used for vascular grafting--In vitro and in vivo studies. J Biomed Mater Res A. 2014; 102(12):4262-75.
DOI: 10.1002/jbm.a.35098.
View
11.
Glicklis R, Merchuk J, Cohen S
. Modeling mass transfer in hepatocyte spheroids via cell viability, spheroid size, and hepatocellular functions. Biotechnol Bioeng. 2004; 86(6):672-80.
DOI: 10.1002/bit.20086.
View
12.
Thomas J, Winther S, Wilson R, Bottcher M
. A novel approach to diagnosing coronary artery disease: acoustic detection of coronary turbulence. Int J Cardiovasc Imaging. 2016; 33(1):129-136.
DOI: 10.1007/s10554-016-0970-5.
View
13.
Yesilsoy C, Feigal R
. Effects of endodontic materials on cell viability across standard pore size filters. J Endod. 1985; 11(9):401-7.
DOI: 10.1016/S0099-2399(85)80029-7.
View
14.
Lee K, Mooney D
. Hydrogels for tissue engineering. Chem Rev. 2001; 101(7):1869-79.
DOI: 10.1021/cr000108x.
View
15.
Rayatpisheh S, Heath D, Shakouri A, Rujitanaroj P, Chew S, Chan-Park M
. Combining cell sheet technology and electrospun scaffolding for engineered tubular, aligned, and contractile blood vessels. Biomaterials. 2014; 35(9):2713-9.
DOI: 10.1016/j.biomaterials.2013.12.035.
View
16.
Thomas A, Orellano I, Lam T, Noichl B, Geiger M, Amler A
. Vascular bioprinting with enzymatically degradable bioinks via multi-material projection-based stereolithography. Acta Biomater. 2020; 117:121-132.
DOI: 10.1016/j.actbio.2020.09.033.
View
17.
Lai T, Yu J, Tsai W
. Gelatin methacrylate/carboxybetaine methacrylate hydrogels with tunable crosslinking for controlled drug release. J Mater Chem B. 2020; 4(13):2304-2313.
DOI: 10.1039/c5tb02518d.
View
18.
Fazal F, Raghav S, Callanan A, Koutsos V, Radacsi N
. Recent advancements in the bioprinting of vascular grafts. Biofabrication. 2021; 13(3).
DOI: 10.1088/1758-5090/ac0963.
View
19.
Oliviero O, Ventre M, Netti P
. Functional porous hydrogels to study angiogenesis under the effect of controlled release of vascular endothelial growth factor. Acta Biomater. 2012; 8(9):3294-301.
DOI: 10.1016/j.actbio.2012.05.019.
View
20.
Holzl K, Lin S, Tytgat L, Van Vlierberghe S, Gu L, Ovsianikov A
. Bioink properties before, during and after 3D bioprinting. Biofabrication. 2016; 8(3):032002.
DOI: 10.1088/1758-5090/8/3/032002.
View