6.
Muttenthaler M, King G, Adams D, Alewood P
. Trends in peptide drug discovery. Nat Rev Drug Discov. 2021; 20(4):309-325.
DOI: 10.1038/s41573-020-00135-8.
View
7.
Khalily M, Soydan M
. Peptide-based diagnostic and therapeutic agents: Where we are and where we are heading?. Chem Biol Drug Des. 2022; 101(3):772-793.
DOI: 10.1111/cbdd.14180.
View
8.
Zhang H, Saravanan K, Wei Y, Jiao Y, Yang Y, Pan Y
. Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening. J Chem Inf Model. 2023; 63(3):835-845.
DOI: 10.1021/acs.jcim.2c01485.
View
9.
Jawa V, Cousens L, Awwad M, Wakshull E, Kropshofer H, De Groot A
. T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. Clin Immunol. 2013; 149(3):534-55.
DOI: 10.1016/j.clim.2013.09.006.
View
10.
Watts C
. Capture and processing of exogenous antigens for presentation on MHC molecules. Annu Rev Immunol. 1997; 15:821-50.
DOI: 10.1146/annurev.immunol.15.1.821.
View
11.
Vaisman-Mentesh A, Gutierrez-Gonzalez M, DeKosky B, Wine Y
. The Molecular Mechanisms That Underlie the Immune Biology of Anti-drug Antibody Formation Following Treatment With Monoclonal Antibodies. Front Immunol. 2020; 11:1951.
PMC: 7461797.
DOI: 10.3389/fimmu.2020.01951.
View
12.
Ning L, He B, Zhou P, Derda R, Huang J
. Molecular Design of Peptide-Fc Fusion Drugs. Curr Drug Metab. 2018; 20(3):203-208.
DOI: 10.2174/1389200219666180821095355.
View
13.
Rosenstock J, Balas B, Charbonnel B, Bolli G, Boldrin M, Ratner R
. The fate of taspoglutide, a weekly GLP-1 receptor agonist, versus twice-daily exenatide for type 2 diabetes: the T-emerge 2 trial. Diabetes Care. 2012; 36(3):498-504.
PMC: 3579343.
DOI: 10.2337/dc12-0709.
View
14.
Groell F, Jordan O, Borchard G
. In vitro models for immunogenicity prediction of therapeutic proteins. Eur J Pharm Biopharm. 2018; 130:128-142.
DOI: 10.1016/j.ejpb.2018.06.008.
View
15.
Zhou Y, Huang Z, Li W, Wei J, Jiang Q, Yang W
. Deep learning in preclinical antibody drug discovery and development. Methods. 2023; 218:57-71.
DOI: 10.1016/j.ymeth.2023.07.003.
View
16.
Zhou Y, Huang Z, Gou Y, Liu S, Yang W, Zhang H
. AB-Amy: machine learning aided amyloidogenic risk prediction of therapeutic antibody light chains. Antib Ther. 2023; 6(3):147-156.
PMC: 10365155.
DOI: 10.1093/abt/tbad007.
View
17.
Zhou Y, Xie S, Yang Y, Jiang L, Liu S, Li W
. SSH2.0: A Better Tool for Predicting the Hydrophobic Interaction Risk of Monoclonal Antibody. Front Genet. 2022; 13:842127.
PMC: 8965096.
DOI: 10.3389/fgene.2022.842127.
View
18.
Paul S, Kolla R, Sidney J, Weiskopf D, Fleri W, Kim Y
. Evaluating the immunogenicity of protein drugs by applying in vitro MHC binding data and the immune epitope database and analysis resource. Clin Dev Immunol. 2013; 2013:467852.
PMC: 3816028.
DOI: 10.1155/2013/467852.
View
19.
Weaver J, Lazarski C, Richards K, Chaves F, Jenks S, Menges P
. Immunodominance of CD4 T cells to foreign antigens is peptide intrinsic and independent of molecular context: implications for vaccine design. J Immunol. 2008; 181(5):3039-48.
PMC: 2814425.
DOI: 10.4049/jimmunol.181.5.3039.
View
20.
Lazarski C, Chaves F, Jenks S, Wu S, Richards K, Weaver J
. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity. 2005; 23(1):29-40.
DOI: 10.1016/j.immuni.2005.05.009.
View