» Articles » PMID: 3826804

The Dynamic Twisting of the Left Ventricle: a Computer Study

Overview
Journal Ann Biomed Eng
Date 1986 Jan 1
PMID 3826804
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

A mathematical analysis which relates the dynamic twisting motion of the heart around its longitudinal axis to the mechanical function of the left ventricle (LV) is presented. The study thus extends our earlier model which relates the micro-scale sarcomere dynamics, the fibrous structure of the myocardium, and the electrical transmural activation wave to the global LV function. The analysis demonstrates that although the angular twisting motion of the heart moderates the sarcomere length (SL) and the strain rate distributions throughout the myocardium, the global characteristics of the LV function are almost independent of the twisting phenomenon. The endocardial sarcomeres are nevertheless subjected to higher strains and higher (negative) strain rates than the corresponding (positive) epicardial sarcomeres. Utilizing the sarcomere stress length area to predict oxygen demand, it is shown that the twisting motion of the heart produces the metabolic gradient across the LV wall. In spite of the moderating effect of the twist, a larger than normal gradient in oxygen demand is predicted for cases of concentric hypertrophy.

Citing Articles

Tilting of the Cardiac Axis During Dobutamine Stress Echocardiography: Potential Marker for Ischemia.

Gunta P, Lopez-Candales A, Baweja P, Sweeney M Cureus. 2021; 13(6):e15605.

PMID: 34277225 PMC: 8275067. DOI: 10.7759/cureus.15605.


Evaluation of left ventricular strain in patients with dilated cardiomyopathy.

Yu Y, Yu S, Tang X, Ren H, Li S, Zou Q J Int Med Res. 2017; 45(6):2092-2100.

PMID: 28587541 PMC: 5805211. DOI: 10.1177/0300060517712164.


Transmural gradients of myocardial structure and mechanics: Implications for fiber stress and strain in pressure overload.

Carruth E, McCulloch A, Omens J Prog Biophys Mol Biol. 2016; 122(3):215-226.

PMID: 27845176 PMC: 5161628. DOI: 10.1016/j.pbiomolbio.2016.11.004.


Fluid-structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle.

Le T, Sotiropoulos F J Comput Phys. 2013; 244:41-62.

PMID: 23729841 PMC: 3667163. DOI: 10.1016/j.jcp.2012.08.036.


On the three-dimensional vortical structure of early diastolic flow in a patient-specific left ventricle.

Le T, Sotiropoulos F Eur J Mech B Fluids. 2012; 35:20-24.

PMID: 22773898 PMC: 3388554. DOI: 10.1016/j.euromechflu.2012.01.013.


References
1.
Ingels Jr N, Daughters 2nd G, Stinson E, Alderman E . Measurement of midwall myocardial dynamics in intact man by radiography of surgically implanted markers. Circulation. 1975; 52(5):859-67. DOI: 10.1161/01.cir.52.5.859. View

2.
MONROE R, GAMBLE W, LAFARGE C, Benoualid H, Weisul J . Transmural coronary venous O2 saturations in normal and isolated hearts. Am J Physiol. 1975; 228(1):318-24. DOI: 10.1152/ajplegacy.1975.228.1.318. View

3.
Arts T, Veenstra P, Reneman R . Epicardial deformation and left ventricular wall mechanisms during ejection in the dog. Am J Physiol. 1982; 243(3):H379-90. DOI: 10.1152/ajpheart.1982.243.3.H379. View

4.
Streeter Jr D, SPOTNITZ H, Patel D, ROSS Jr J, SONNENBLICK E . Fiber orientation in the canine left ventricle during diastole and systole. Circ Res. 1969; 24(3):339-47. DOI: 10.1161/01.res.24.3.339. View

5.
Wong A . Some proposals in cardiac muscle mechanics and energetics. Bull Math Biol. 1973; 35(3):375-99. DOI: 10.1007/BF02458344. View