6.
Falco W, Scherer M, Oliveira S, Wender H, Colbeck I, Lawson T
. Phytotoxicity of silver nanoparticles on Vicia faba: Evaluation of particle size effects on photosynthetic performance and leaf gas exchange. Sci Total Environ. 2019; 701:134816.
DOI: 10.1016/j.scitotenv.2019.134816.
View
7.
Ghazaei F, Shariati M
. Effects of titanium nanoparticles on the photosynthesis, respiration, and physiological parameters in Dunaliella salina and Dunaliella tertiolecta. Protoplasma. 2019; 257(1):75-88.
DOI: 10.1007/s00709-019-01420-z.
View
8.
Hermanowicz P, Sarna M, Burda K, Gabrys H
. AtomicJ: an open source software for analysis of force curves. Rev Sci Instrum. 2014; 85(6):063703.
DOI: 10.1063/1.4881683.
View
9.
Horton P, Johnson M, Perez-Bueno M, Kiss A, Ruban A
. Photosynthetic acclimation: does the dynamic structure and macro-organisation of photosystem II in higher plant grana membranes regulate light harvesting states?. FEBS J. 2008; 275(6):1069-79.
DOI: 10.1111/j.1742-4658.2008.06263.x.
View
10.
Hu S, Ding Y, Zhu C
. Sensitivity and Responses of Chloroplasts to Heat Stress in Plants. Front Plant Sci. 2020; 11:375.
PMC: 7142257.
DOI: 10.3389/fpls.2020.00375.
View
11.
Hussain S, Iqbal N, Brestic M, Raza M, Pang T, Langham D
. Changes in morphology, chlorophyll fluorescence performance and Rubisco activity of soybean in response to foliar application of ionic titanium under normal light and shade environment. Sci Total Environ. 2018; 658:626-637.
DOI: 10.1016/j.scitotenv.2018.12.182.
View
12.
Javed R, Ain N, Gul A, Ahmad M, Guo W, Ao Q
. Diverse biotechnological applications of multifunctional titanium dioxide nanoparticles: An up-to-date review. IET Nanobiotechnol. 2022; 16(5):171-189.
PMC: 9178655.
DOI: 10.1049/nbt2.12085.
View
13.
Ji W, Hong E, Chen X, Li Z, Lin B, Xia X
. Photosynthetic and physiological responses of different peony cultivars to high temperature. Front Plant Sci. 2022; 13:969718.
PMC: 9650587.
DOI: 10.3389/fpls.2022.969718.
View
14.
Kalaji H, Carpentier R, Allakhverdiev S, Bosa K
. Fluorescence parameters as early indicators of light stress in barley. J Photochem Photobiol B. 2012; 112:1-6.
DOI: 10.1016/j.jphotobiol.2012.03.009.
View
15.
Koczurkiewicz P, Podolak I, Skrzeczynska-Moncznik J, Sarna M, Wojcik K, Ryszawy D
. Triterpene saponosides from Lysimachia ciliata differentially attenuate invasive potential of prostate cancer cells. Chem Biol Interact. 2013; 206(1):6-17.
DOI: 10.1016/j.cbi.2013.08.003.
View
16.
Maloof J, Borevitz J, Dabi T, Lutes J, Nehring R, Redfern J
. Natural variation in light sensitivity of Arabidopsis. Nat Genet. 2001; 29(4):441-6.
DOI: 10.1038/ng777.
View
17.
Mathur S, Jajoo A
. Alterations in photochemical efficiency of photosystem II in wheat plant on hot summer day. Physiol Mol Biol Plants. 2014; 20(4):527-31.
PMC: 4185059.
DOI: 10.1007/s12298-014-0249-z.
View
18.
Middepogu A, Hou J, Gao X, Lin D
. Effect and mechanism of TiO nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicol Environ Saf. 2018; 161:497-506.
DOI: 10.1016/j.ecoenv.2018.06.027.
View
19.
Moore M
. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environ Int. 2006; 32(8):967-76.
DOI: 10.1016/j.envint.2006.06.014.
View
20.
Orzechowska A, Trtilek M, Tokarz K, Rozpadek P
. A study of light-induced stomatal response in Arabidopsis using thermal imaging. Biochem Biophys Res Commun. 2020; 533(4):1129-1134.
DOI: 10.1016/j.bbrc.2020.09.020.
View