» Articles » PMID: 38263211

Mass Spectrometry-based Proteomics Data from Thousands of HeLa Control Samples

Overview
Journal Sci Data
Specialty Science
Date 2024 Jan 23
PMID 38263211
Authors
Affiliations
Soon will be listed here.
Abstract

Here we provide a curated, large scale, label free mass spectrometry-based proteomics data set derived from HeLa cell lines for general purpose machine learning and analysis. Data access and filtering is a tedious task, which takes up considerable amounts of time for researchers. Therefore we provide machine based metadata for easy selection and overview along the 7,444 raw files and MaxQuant search output. For convenience, we provide three filtered and aggregated development datasets on the protein groups, peptides and precursors level. Next to providing easy to access training data, we provide a SDRF file annotating each raw file with instrument settings allowing automated reprocessing. We encourage others to enlarge this data set by instrument runs of further HeLa samples from different machine types by providing our workflows and analysis scripts.

Citing Articles

Imputation of label-free quantitative mass spectrometry-based proteomics data using self-supervised deep learning.

Webel H, Niu L, Bach Nielsen A, Locard-Paulet M, Mann M, Jensen L Nat Commun. 2024; 15(1):5405.

PMID: 38926340 PMC: 11208500. DOI: 10.1038/s41467-024-48711-5.

References
1.
Jarnuczak A, Najgebauer H, Barzine M, Kundu D, Ghavidel F, Perez-Riverol Y . An integrated landscape of protein expression in human cancer. Sci Data. 2021; 8(1):115. PMC: 8065022. DOI: 10.1038/s41597-021-00890-2. View

2.
Bader J, Albrecht V, Mann M . MS-Based Proteomics of Body Fluids: The End of the Beginning. Mol Cell Proteomics. 2023; 22(7):100577. PMC: 10388585. DOI: 10.1016/j.mcpro.2023.100577. View

3.
Liu Y, Mi Y, Mueller T, Kreibich S, Williams E, van Drogen A . Multi-omic measurements of heterogeneity in HeLa cells across laboratories. Nat Biotechnol. 2019; 37(3):314-322. DOI: 10.1038/s41587-019-0037-y. View

4.
Dai C, Fullgrabe A, Pfeuffer J, Solovyeva E, Deng J, Moreno P . A proteomics sample metadata representation for multiomics integration and big data analysis. Nat Commun. 2021; 12(1):5854. PMC: 8494749. DOI: 10.1038/s41467-021-26111-3. View

5.
Neely B, Dorfer V, Martens L, Bludau I, Bouwmeester R, Degroeve S . Toward an Integrated Machine Learning Model of a Proteomics Experiment. J Proteome Res. 2023; 22(3):681-696. PMC: 9990124. DOI: 10.1021/acs.jproteome.2c00711. View