6.
Parisi G, Kemker R, Part J, Kanan C, Wermter S
. Continual lifelong learning with neural networks: A review. Neural Netw. 2019; 113:54-71.
DOI: 10.1016/j.neunet.2019.01.012.
View
7.
Hadsell R, Rao D, Rusu A, Pascanu R
. Embracing Change: Continual Learning in Deep Neural Networks. Trends Cogn Sci. 2020; 24(12):1028-1040.
DOI: 10.1016/j.tics.2020.09.004.
View
8.
De Lange M, Aljundi R, Masana M, Parisot S, Jia X, Leonardis A
. A Continual Learning Survey: Defying Forgetting in Classification Tasks. IEEE Trans Pattern Anal Mach Intell. 2021; 44(7):3366-3385.
DOI: 10.1109/TPAMI.2021.3057446.
View
9.
Wagner P, Strodthoff N, Bousseljot R, Kreiseler D, Lunze F, Samek W
. PTB-XL, a large publicly available electrocardiography dataset. Sci Data. 2020; 7(1):154.
PMC: 7248071.
DOI: 10.1038/s41597-020-0495-6.
View
10.
van de Ven G, Tuytelaars T, Tolias A
. Three types of incremental learning. Nat Mach Intell. 2022; 4(12):1185-1197.
PMC: 9771807.
DOI: 10.1038/s42256-022-00568-3.
View
11.
Sun L, Zhang M, Wang B, Tiwari P
. Few-Shot Class-Incremental Learning for Medical Time Series Classification. IEEE J Biomed Health Inform. 2023; PP.
DOI: 10.1109/JBHI.2023.3247861.
View
12.
Ammour N, Alhichri H, Bazi Y, Alajlan N
. LwF-ECG: Learning-without-forgetting approach for electrocardiogram heartbeat classification based on memory with task selector. Comput Biol Med. 2021; 137:104807.
DOI: 10.1016/j.compbiomed.2021.104807.
View
13.
Kirkpatrick J, Pascanu R, Rabinowitz N, Veness J, Desjardins G, Rusu A
. Overcoming catastrophic forgetting in neural networks. Proc Natl Acad Sci U S A. 2017; 114(13):3521-3526.
PMC: 5380101.
DOI: 10.1073/pnas.1611835114.
View
14.
Gao Q, Luo Z, Klabjan D, Zhang F
. Efficient Architecture Search for Continual Learning. IEEE Trans Neural Netw Learn Syst. 2022; 34(11):8555-8565.
DOI: 10.1109/TNNLS.2022.3151511.
View
15.
Moody G, Mark R
. The impact of the MIT-BIH arrhythmia database. IEEE Eng Med Biol Mag. 2001; 20(3):45-50.
DOI: 10.1109/51.932724.
View
16.
Kiyasseh D, Zhu T, Clifton D
. A clinical deep learning framework for continually learning from cardiac signals across diseases, time, modalities, and institutions. Nat Commun. 2021; 12(1):4221.
PMC: 8270996.
DOI: 10.1038/s41467-021-24483-0.
View
17.
Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov P, Mark R
. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. 2000; 101(23):E215-20.
DOI: 10.1161/01.cir.101.23.e215.
View
18.
Sun L, Chen Q, Zheng M, Ning X, Gupta D, Tiwari P
. Energy-efficient Online Continual Learning for Time Series Classification in Nanorobot-based Smart Health. IEEE J Biomed Health Inform. 2023; PP.
DOI: 10.1109/JBHI.2023.3289992.
View
19.
Faust O, Hagiwara Y, Hong T, Lih O, Rajendra Acharya U
. Deep learning for healthcare applications based on physiological signals: A review. Comput Methods Programs Biomed. 2018; 161:1-13.
DOI: 10.1016/j.cmpb.2018.04.005.
View
20.
Lee C, Lee A
. Clinical applications of continual learning machine learning. Lancet Digit Health. 2020; 2(6):e279-e281.
PMC: 8259323.
DOI: 10.1016/S2589-7500(20)30102-3.
View