» Articles » PMID: 38252170

Dose Selection for Aztreonam-avibactam, Including Adjustments for Renal Impairment, for Phase IIa and Phase III Evaluation

Overview
Specialty Pharmacology
Date 2024 Jan 22
PMID 38252170
Authors
Affiliations
Soon will be listed here.
Abstract

Purpose: A series of iterative population pharmacokinetic (PK) modeling and probability of target attainment (PTA) analyses based on emerging data supported dose selection for aztreonam-avibactam, an investigational combination antibiotic for serious Gram-negative bacterial infections.

Methods: Two iterations of PK models built from avibactam data in infected patients and aztreonam data in healthy subjects with "patient-like" assumptions were used in joint PTA analyses (primary target: aztreonam 60% fT > 8 mg/L, avibactam 50% fT > 2.5 mg/L) exploring patient variability, infusion durations, and adjustments for moderate (estimated creatinine clearance [CrCL] > 30 to ≤ 50 mL/min) and severe renal impairment (> 15 to ≤ 30 mL/min). Achievement of > 90% joint PTA and the impact of differential renal clearance were considerations in dose selection.

Results: Iteration 1 simulations for Phase I/IIa dose selection/modification demonstrated that 3-h and continuous infusions provide comparable PTA; avibactam dose drives joint PTA within clinically relevant exposure targets; and loading doses support more rapid joint target attainment. An aztreonam/avibactam 500/137 mg 30-min loading dose and 1500/410 mg 3-h maintenance infusions q6h were selected for further evaluation. Iteration 2 simulations using expanded PK models supported an alteration to the regimen (500/167 mg loading; 1500/500 mg q6h maintenance 3-h infusions for CrCL > 50 mL/min) and selection of doses for renal impairment for Phase IIa/III clinical studies.

Conclusion: A loading dose plus 3-h maintenance infusions of aztreonam-avibactam in a 3:1 fixed ratio q6h optimizes joint PTA. These analyses supported dose selection for the aztreonam-avibactam Phase III clinical program.

Clinical Trial Registration: NCT01689207; NCT02655419; NCT03329092; NCT03580044.

Citing Articles

First Clinical Application of Aztreonam-Avibactam in Treating Carbapenem-Resistant Enterobacterales: Insights from Therapeutic Drug Monitoring and Pharmacokinetic Simulations.

Holsken O, Sponheuer K, Weber F, Martens-Lobenhoffer J, Bode-Boger S, Kloft C J Pers Med. 2024; 14(12).

PMID: 39728048 PMC: 11676034. DOI: 10.3390/jpm14121135.


Simulated achievement rate of β-lactams/nacubactam treatment in humans using instantaneous MIC-based PK/PD analysis.

Igarashi Y, Taguchi K, Enoki Y, Chuang V, Matsumoto K J Antimicrob Chemother. 2024; 80(2):547-553.

PMID: 39665259 PMC: 11787893. DOI: 10.1093/jac/dkae443.


Aztreonam-avibactam: The dynamic duo against multidrug-resistant gram-negative pathogens.

Al Musawa M, Bleick C, Herbin S, Caniff K, Van Helden S, Rybak M Pharmacotherapy. 2024; 44(12):927-938.

PMID: 39601336 PMC: 11687205. DOI: 10.1002/phar.4629.


The Challenge of Treating Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria: A Narrative Review.

Hidalgo-Tenorio C, Bou G, Oliver A, Rodriguez-Aguirregabiria M, Salavert M, Martinez-Martinez L Drugs. 2024; 84(12):1519-1539.

PMID: 39467989 PMC: 11652570. DOI: 10.1007/s40265-024-02102-8.


Practical Application of Aztreonam-Avibactam as a Treatment Strategy for Ambler Class B Metallo-β-Lactamase Producing Enterobacteriaceae.

Wong D Antibiotics (Basel). 2024; 13(8).

PMID: 39200065 PMC: 11350918. DOI: 10.3390/antibiotics13080766.

References
1.
Karaiskos I, Galani I, Souli M, Giamarellou H . Novel β-lactam-β-lactamase inhibitor combinations: expectations for the treatment of carbapenem-resistant Gram-negative pathogens. Expert Opin Drug Metab Toxicol. 2019; 15(2):133-149. DOI: 10.1080/17425255.2019.1563071. View

2.
Sader H, Castanheira M, Kimbrough J, Kantro V, Mendes R . Aztreonam/avibactam activity against a large collection of carbapenem-resistant Enterobacterales (CRE) collected in hospitals from Europe, Asia and Latin America (2019-21). JAC Antimicrob Resist. 2023; 5(2):dlad032. PMC: 10032302. DOI: 10.1093/jacamr/dlad032. View

3.
Swabb E, SUGERMAN A, MCKINSTRY D . Multiple-dose pharmacokinetics of the monobactam azthreonam (SQ 26,776) in healthy subjects. Antimicrob Agents Chemother. 1983; 23(1):125-32. PMC: 184629. DOI: 10.1128/AAC.23.1.125. View

4.
Swabb E, SUGERMAN A, PLATT T, Pilkiewicz F, FRANTZ M . Single-dose pharmacokinetics of the monobactam azthreonam (SQ 26,776) in healthy subjects. Antimicrob Agents Chemother. 1982; 21(6):944-9. PMC: 182050. DOI: 10.1128/AAC.21.6.944. View

5.
Singh R, Kim A, Tanudra M, Harris J, McLaughlin R, Patey S . Pharmacokinetics/pharmacodynamics of a β-lactam and β-lactamase inhibitor combination: a novel approach for aztreonam/avibactam. J Antimicrob Chemother. 2015; 70(9):2618-26. DOI: 10.1093/jac/dkv132. View