» Articles » PMID: 38250956

RETRACTED: Modern Subtype Classification and Outlier Detection Using the Attention Embedder to Transform Ovarian Cancer Diagnosis

Overview
Journal Tomography
Publisher MDPI
Specialty Radiology
Date 2024 Jan 22
PMID 38250956
Authors
Affiliations
Soon will be listed here.
Abstract

Ovarian cancer, a deadly female reproductive system disease, is a significant challenge in medical research due to its notorious lethality. Addressing ovarian cancer in the current medical landscape has become more complex than ever. This research explores the complex field of Ovarian Cancer Subtype Classification and the crucial task of Outlier Detection, driven by a progressive automated system, as the need to fight this unforgiving illness becomes critical. This study primarily uses a unique dataset painstakingly selected from 20 esteemed medical institutes. The dataset includes a wide range of images, such as tissue microarray (TMA) images at 40× magnification and whole-slide images (WSI) at 20× magnification. The research is fully committed to identifying abnormalities within this complex environment, going beyond the classification of subtypes of ovarian cancer. We proposed a new Attention Embedder, a state-of-the-art model with effective results in ovarian cancer subtype classification and outlier detection. Using images magnified WSI, the model demonstrated an astonishing 96.42% training accuracy and 95.10% validation accuracy. Similarly, with images magnified via a TMA, the model performed well, obtaining a validation accuracy of 94.90% and a training accuracy of 93.45%. Our fine-tuned hyperparameter testing resulted in exceptional performance on independent images. At 20× magnification, we achieved an accuracy of 93.56%. Even at 40× magnification, our testing accuracy remained high, at 91.37%. This study highlights how machine learning can revolutionize the medical field's ability to classify ovarian cancer subtypes and identify outliers, giving doctors a valuable tool to lessen the severe effects of the disease. Adopting this novel method is likely to improve the practice of medicine and give people living with ovarian cancer worldwide hope.

Citing Articles

RETRACTED: Nobel et al. Modern Subtype Classification and Outlier Detection Using the Attention Embedder to Transform Ovarian Cancer Diagnosis. 2024, , 105-132.

Nobel S, Swapno S, Hossain M, Safran M, Alfarhood S, Kabir M Tomography. 2024; 10(4):520.

PMID: 38668406 PMC: 11054376. DOI: 10.3390/tomography10040040.

References
1.
Olkowicz M, Rosales-Solano H, Kulasingam V, Pawliszyn J . SPME-LC/MS-based serum metabolomic phenotyping for distinguishing ovarian cancer histologic subtypes: a pilot study. Sci Rep. 2021; 11(1):22428. PMC: 8599860. DOI: 10.1038/s41598-021-00802-9. View

2.
Hinchcliff E, Westin S, Herzog T . State of the science: Contemporary front-line treatment of advanced ovarian cancer. Gynecol Oncol. 2022; 166(1):18-24. DOI: 10.1016/j.ygyno.2022.04.021. View

3.
Jayson G, Kohn E, Kitchener H, Ledermann J . Ovarian cancer. Lancet. 2014; 384(9951):1376-88. DOI: 10.1016/S0140-6736(13)62146-7. View

4.
Wisztorski M, Aboulouard S, Roussel L, Duhamel M, Saudemont P, Cardon T . Fallopian tube lesions as potential precursors of early ovarian cancer: a comprehensive proteomic analysis. Cell Death Dis. 2023; 14(9):644. PMC: 10541450. DOI: 10.1038/s41419-023-06165-5. View

5.
Yang J, Ullah A, Su Y, Otoo A, Adu-Gyamfi E, Feng Q . Glycyrrhizin ameliorates impaired glucose metabolism and ovarian dysfunction in a polycystic ovary syndrome mouse model. Biol Reprod. 2023; 109(1):83-96. DOI: 10.1093/biolre/ioad048. View