» Articles » PMID: 38239351

Prediction of Six Macrophage Phenotypes and Their IL-10 Content Based on Single-cell Morphology Using Artificial Intelligence

Overview
Journal Front Immunol
Date 2024 Jan 19
PMID 38239351
Authors
Affiliations
Soon will be listed here.
Abstract

Introduction: The last decade has led to rapid developments and increased usage of computational tools at the single-cell level. However, our knowledge remains limited in how extracellular cues alter quantitative macrophage morphology and how such morphological changes can be used to predict macrophage phenotype as well as cytokine content at the single-cell level.

Methods: Using an artificial intelligence (AI) based approach, this study determined whether (i) accurate macrophage classification and (ii) prediction of intracellular IL-10 at the single-cell level was possible, using only morphological features as predictors for AI. Using a quantitative panel of shape descriptors, our study assessed image-based original and synthetic single-cell data in two different datasets in which CD14+ monocyte-derived macrophages generated from human peripheral blood monocytes were initially primed with GM-CSF or M-CSF followed by polarization with specific stimuli in the presence/absence of continuous GM-CSF or M-CSF. Specifically, M0, M1 (GM-CSF-M1, TNFα/IFNγ-M1, GM-CSF/TNFα/IFNγ-M1) and M2 (M-CSF-M2, IL-4-M2a, M-CSF/IL-4-M2a, IL-10-M2c, M-CSF/IL-10-M2c) macrophages were examined.

Results: Phenotypes were confirmed by ELISA and immunostaining of CD markers. Variations of polarization techniques significantly changed multiple macrophage morphological features, demonstrating that macrophage morphology is a highly sensitive, dynamic marker of phenotype. Using original and synthetic single-cell data, cell morphology alone yielded an accuracy of 93% for the classification of 6 different human macrophage phenotypes (with continuous GM-CSF or M-CSF). A similarly high phenotype classification accuracy of 95% was reached with data generated with different stimuli (discontinuous GM-CSF or M-CSF) and measured at a different time point. These comparably high accuracies clearly validated the here chosen AI-based approach. Quantitative morphology also allowed prediction of intracellular IL-10 with 95% accuracy using only original data.

Discussion: Thus, image-based machine learning using morphology-based features not only (i) classified M0, M1 and M2 macrophages but also (ii) classified M2a and M2c subtypes and (iii) predicted intracellular IL-10 at the single-cell level among six phenotypes. This simple approach can be used as a general strategy not only for macrophage phenotyping but also for prediction of IL-10 content of any IL-10 producing cell, which can help improve our understanding of cytokine biology at the single-cell level.

Citing Articles

Tumor microenvironment noise-induced polarization: the main challenge in macrophages' immunotherapy for cancer.

Sierra J, de Leon U, Padilla-Longoria P Mol Cell Biochem. 2025; .

PMID: 39827422 DOI: 10.1007/s11010-025-05205-2.


Should Artificial Intelligence Play a Durable Role in Biomedical Research and Practice?.

Bongrand P Int J Mol Sci. 2025; 25(24.

PMID: 39769135 PMC: 11676049. DOI: 10.3390/ijms252413371.


Macrophage plasticity: signaling pathways, tissue repair, and regeneration.

Yan L, Wang J, Cai X, Liou Y, Shen H, Hao J MedComm (2020). 2024; 5(8):e658.

PMID: 39092292 PMC: 11292402. DOI: 10.1002/mco2.658.


Effects of bone surface topography and chemistry on macrophage polarization.

Ozcolak B, Erenay B, Odabas S, Jandt K, Garipcan B Sci Rep. 2024; 14(1):12721.

PMID: 38830871 PMC: 11148019. DOI: 10.1038/s41598-024-62484-3.


New Strategies for Macrophage Re-Education in Cancer: An Update.

Lampiasi N Int J Mol Sci. 2024; 25(6).

PMID: 38542388 PMC: 10970142. DOI: 10.3390/ijms25063414.


References
1.
Utomo L, Bastiaansen-Jenniskens Y, Verhaar J, van Osch G . Cartilage inflammation and degeneration is enhanced by pro-inflammatory (M1) macrophages in vitro, but not inhibited directly by anti-inflammatory (M2) macrophages. Osteoarthritis Cartilage. 2016; 24(12):2162-2170. DOI: 10.1016/j.joca.2016.07.018. View

2.
McWhorter F, Wang T, Nguyen P, Chung T, Liu W . Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci U S A. 2013; 110(43):17253-8. PMC: 3808615. DOI: 10.1073/pnas.1308887110. View

3.
Mendoza-Coronel E, Ortega E . Macrophage Polarization Modulates FcγR- and CD13-Mediated Phagocytosis and Reactive Oxygen Species Production, Independently of Receptor Membrane Expression. Front Immunol. 2017; 8:303. PMC: 5366847. DOI: 10.3389/fimmu.2017.00303. View

4.
Vijayan V, Pradhan P, Braud L, Fuchs H, Gueler F, Motterlini R . Human and murine macrophages exhibit differential metabolic responses to lipopolysaccharide - A divergent role for glycolysis. Redox Biol. 2019; 22:101147. PMC: 6396203. DOI: 10.1016/j.redox.2019.101147. View

5.
Schroder K, Irvine K, Taylor M, Bokil N, Le Cao K, Masterman K . Conservation and divergence in Toll-like receptor 4-regulated gene expression in primary human versus mouse macrophages. Proc Natl Acad Sci U S A. 2012; 109(16):E944-53. PMC: 3341041. DOI: 10.1073/pnas.1110156109. View