Performing a Research Study Using Open-Source Deep Learning Models
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
References
1.
Huh J, Lee J, Hwang E, Park C
. Effects of Expert-Determined Reference Standards in Evaluating the Diagnostic Performance of a Deep Learning Model: A Malignant Lung Nodule Detection Task on Chest Radiographs. Korean J Radiol. 2023; 24(2):155-165.
PMC: 9892220.
DOI: 10.3348/kjr.2022.0548.
View
2.
Pickhardt P, Summers R, Garrett J
. Automated CT-Based Body Composition Analysis: A Golden Opportunity. Korean J Radiol. 2021; 22(12):1934-1937.
PMC: 8628162.
DOI: 10.3348/kjr.2021.0775.
View
3.
Lee M, Zea R, Garrett J, Graffy P, Summers R, Pickhardt P
. Abdominal CT Body Composition Thresholds Using Automated AI Tools for Predicting 10-year Adverse Outcomes. Radiology. 2022; 306(2):e220574.
PMC: 9885340.
DOI: 10.1148/radiol.220574.
View
4.
Moons K, Altman D, Reitsma J, Ioannidis J, Macaskill P, Steyerberg E
. Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration. Ann Intern Med. 2015; 162(1):W1-73.
DOI: 10.7326/M14-0698.
View
5.
Lu M, Raghu V, Mayrhofer T, Aerts H, Hoffmann U
. Deep Learning Using Chest Radiographs to Identify High-Risk Smokers for Lung Cancer Screening Computed Tomography: Development and Validation of a Prediction Model. Ann Intern Med. 2020; 173(9):704-713.
PMC: 9200444.
DOI: 10.7326/M20-1868.
View