» Articles » PMID: 38211710

Spontaneous and Optogenetically Induced Cortical Spreading Depolarization in Familial Hemiplegic Migraine Type 1 Mutant Mice

Overview
Journal Neurobiol Dis
Specialty Neurology
Date 2024 Jan 11
PMID 38211710
Authors
Affiliations
Soon will be listed here.
Abstract

Mechanisms underlying the migraine aura are incompletely understood, which to large extent is related to a lack of models in which cortical spreading depolarization (CSD), the correlate of the aura, occurs spontaneously. Here, we investigated electrophysiological and behavioural CSD features in freely behaving mice expressing mutant Ca2.1 Ca channels, either with the milder R192Q or the severer S218L missense mutation in the α1 subunit, known to cause familial hemiplegic migraine type 1 (FHM1) in patients. Very rarely, spontaneous CSDs were observed in mutant but never in wildtype mice. In homozygous Cacna1a mice exclusively single-wave CSDs were observed whereas heterozygous Cacna1a mice displayed multiple-wave events, seemingly in line with the more severe clinical phenotype associated with the S218L mutation. Spontaneous CSDs were associated with body stretching, one-directional slow head turning, and rotating movement of the body. Spontaneous CSD events were compared with those induced in a controlled manner using minimally invasive optogenetics. Also in the optogenetic experiments single-wave CSDs were observed in Cacna1a and Cacna1a mice (whereas the latter also showed multiple-wave events) with movements similar to those observed with spontaneous events. Compared to wildtype mice, FHM1 mutant mice exhibited a reduced threshold and an increased propagation speed for optogenetically induced CSD with a more profound CSD-associated dysfunction, as indicated by a prolonged suppression of transcallosal evoked potentials and a reduction of unilateral forepaw grip performance. When induced during sleep, the optogenetic CSD threshold was particularly lowered, which may explain why spontaneous CSD events predominantly occurred during sleep. In conclusion, our data show that key neurophysiological and behavioural features of optogenetically induced CSDs mimic those of rare spontaneous events in FHM1 R192Q and S218L mutant mice with differences in severity in line with FHM1 clinical phenotypes seen with these mutations.

Citing Articles

Mechanisms underlying CSD initiation implicated by genetic mouse models of migraine.

Pietrobon D, Brennan K J Headache Pain. 2025; 26(1):17.

PMID: 39871148 PMC: 11773941. DOI: 10.1186/s10194-025-01948-x.


Exfoliation syndrome genetics in the era of post-GWAS.

Elsayed O, Cai J, Liu Y Vision Res. 2024; 226:108518.

PMID: 39549468 PMC: 11624108. DOI: 10.1016/j.visres.2024.108518.


The Dawn and Advancement of the Knowledge of the Genetics of Migraine.

Zalaquett N, Salameh E, Kim J, Ghanbarian E, Tawk K, Abouzari M J Clin Med. 2024; 13(9).

PMID: 38731230 PMC: 11084801. DOI: 10.3390/jcm13092701.


Models of Trigeminal Activation: Is There an Animal Model of Migraine?.

Spekker E, Fejes-Szabo A, Nagy-Grocz G Brain Sci. 2024; 14(4).

PMID: 38671969 PMC: 11048078. DOI: 10.3390/brainsci14040317.