6.
Do M, Ngo H, Guo W, Liu Y, Chang S, Nguyen D
. Challenges in the application of microbial fuel cells to wastewater treatment and energy production: A mini review. Sci Total Environ. 2018; 639:910-920.
DOI: 10.1016/j.scitotenv.2018.05.136.
View
7.
Rethinasabapathy M, Lee J, Roh K, Kang S, Oh S, Park B
. Silver grass-derived activated carbon with coexisting micro-, meso- and macropores as excellent bioanodes for microbial colonization and power generation in sustainable microbial fuel cells. Bioresour Technol. 2020; 300:122646.
DOI: 10.1016/j.biortech.2019.122646.
View
8.
Gupta S, Patro A, Mittal Y, Dwivedi S, Saket P, Panja R
. The race between classical microbial fuel cells, sediment-microbial fuel cells, plant-microbial fuel cells, and constructed wetlands-microbial fuel cells: Applications and technology readiness level. Sci Total Environ. 2023; 879:162757.
DOI: 10.1016/j.scitotenv.2023.162757.
View
9.
Radouani F, Sanchez-Cid C, Silbande A, Laure A, Ruiz-Valencia A, Robert F
. Evolution and interaction of microbial communities in mangrove microbial fuel cells and first description of Shewanella fodinae as electroactive bacterium. Bioelectrochemistry. 2023; 153:108460.
DOI: 10.1016/j.bioelechem.2023.108460.
View
10.
Call T, Carey T, Bombelli P, Lea-Smith D, Hooper P, Howe C
. Platinum-free, graphene based anodes and air cathodes for single chamber microbial fuel cells. J Mater Chem A Mater. 2018; 5(45):23872-23886.
PMC: 5795293.
DOI: 10.1039/c7ta06895f.
View
11.
Gomaa O, Selim N, Fathy R, Hamed H
. Promoting bacteria-anode interfacial electron transfer by palladium nano-complex in double chamber microbial fuel cell. Environ Technol. 2019; 42(1):148-159.
DOI: 10.1080/09593330.2019.1625562.
View
12.
Wu X, Qiao Y, Guo C, Shi Z, Li C
. Nitrogen doping to atomically match reaction sites in microbial fuel cells. Commun Chem. 2023; 3(1):68.
PMC: 9814380.
DOI: 10.1038/s42004-020-0316-z.
View
13.
Xu H, Wang L, Wen Q, Chen Y, Qi L, Huang J
. A 3D porous NCNT sponge anode modified with chitosan and Polyaniline for high-performance microbial fuel cell. Bioelectrochemistry. 2019; 129:144-153.
DOI: 10.1016/j.bioelechem.2019.05.008.
View
14.
Mahmoodzadeh F, Navidjouy N, Alizadeh S, Rahimnejad M
. Investigation of microbial fuel cell performance based on the nickel thin film modified electrodes. Sci Rep. 2023; 13(1):20755.
PMC: 10676379.
DOI: 10.1038/s41598-023-48290-3.
View
15.
Taskan E, Bulak S, Taskan B, Sasmaz M, El Abed S, El Abed A
. Nitinol as a suitable anode material for electricity generation in microbial fuel cells. Bioelectrochemistry. 2019; 128:118-125.
DOI: 10.1016/j.bioelechem.2019.03.008.
View
16.
Ahmadian Yazdi A, DAngelo L, Omer N, Windiasti G, Lu X, Xu J
. Carbon nanotube modification of microbial fuel cell electrodes. Biosens Bioelectron. 2016; 85:536-552.
DOI: 10.1016/j.bios.2016.05.033.
View
17.
Santoro C, Arbizzani C, Erable B, Ieropoulos I
. Microbial fuel cells: From fundamentals to applications. A review. J Power Sources. 2017; 356:225-244.
PMC: 5465942.
DOI: 10.1016/j.jpowsour.2017.03.109.
View
18.
Uria N, Ferrera I, Mas J
. Electrochemical performance and microbial community profiles in microbial fuel cells in relation to electron transfer mechanisms. BMC Microbiol. 2017; 17(1):208.
PMC: 5648455.
DOI: 10.1186/s12866-017-1115-2.
View
19.
Caizan-Juanarena L, Borsje C, Sleutels T, Yntema D, Santoro C, Ieropoulos I
. Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities. Biotechnol Adv. 2019; 39:107456.
PMC: 7068652.
DOI: 10.1016/j.biotechadv.2019.107456.
View
20.
Kim M, Li S, Kong D, Song Y, Park S, Kim H
. Polydopamine/polypyrrole-modified graphite felt enhances biocompatibility for electroactive bacteria and power density of microbial fuel cell. Chemosphere. 2022; 313:137388.
DOI: 10.1016/j.chemosphere.2022.137388.
View