6.
Wang C, Wang X, Li J, Guan J, Tan Z, Zhang Z
. Genome-Wide Identification and Transcript Analysis Reveal Potential Roles of Oligopeptide Transporter Genes in Iron Deficiency Induced Cadmium Accumulation in Peanut. Front Plant Sci. 2022; 13:894848.
PMC: 9131082.
DOI: 10.3389/fpls.2022.894848.
View
7.
Tabata K, Kashiwagi S, Mori H, Ueguchi C, Mizuno T
. Cloning of a cDNA encoding a putative metal-transporting P-type ATPase from Arabidopsis thaliana. Biochim Biophys Acta. 1997; 1326(1):1-6.
DOI: 10.1016/s0005-2736(97)00064-3.
View
8.
Wang X, Wang C, Zhang Z, Shi G
. Genome-wide Identification of Metal Tolerance Protein Genes in Peanut: Differential Expression in the Root of Two Contrasting Cultivars Under Metal Stresses. Front Plant Sci. 2022; 13:791200.
PMC: 9011049.
DOI: 10.3389/fpls.2022.791200.
View
9.
Ueno D, Milner M, Yamaji N, Yokosho K, Koyama E, Clemencia Zambrano M
. Elevated expression of TcHMA3 plays a key role in the extreme Cd tolerance in a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Plant J. 2011; 66(5):852-62.
DOI: 10.1111/j.1365-313X.2011.04548.x.
View
10.
Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A
. AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol. 2008; 149(2):894-904.
PMC: 2633814.
DOI: 10.1104/pp.108.130294.
View
11.
Cobbett C, Hussain D, Haydon M
. Structural and functional relationships between type 1 heavy metal-transporting P-type ATPases in Arabidopsis. New Phytol. 2021; 159(2):315-321.
DOI: 10.1046/j.1469-8137.2003.00785.x.
View
12.
Baxter I, Tchieu J, Sussman M, Boutry M, Palmgren M, Gribskov M
. Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol. 2003; 132(2):618-28.
PMC: 167002.
DOI: 10.1104/pp.103.021923.
View
13.
Clevenger J, Chu Y, Scheffler B, Ozias-Akins P
. A Developmental Transcriptome Map for Allotetraploid . Front Plant Sci. 2016; 7:1446.
PMC: 5043296.
DOI: 10.3389/fpls.2016.01446.
View
14.
Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, K Nishizawa N
. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ. 2012; 35(11):1948-57.
DOI: 10.1111/j.1365-3040.2012.02527.x.
View
15.
Huang X, Deng F, Yamaji N, Pinson S, Fujii-Kashino M, Danku J
. A heavy metal P-type ATPase OsHMA4 prevents copper accumulation in rice grain. Nat Commun. 2016; 7:12138.
PMC: 4941113.
DOI: 10.1038/ncomms12138.
View
16.
Wong C, Cobbett C
. HMA P-type ATPases are the major mechanism for root-to-shoot Cd translocation in Arabidopsis thaliana. New Phytol. 2008; 181(1):71-78.
DOI: 10.1111/j.1469-8137.2008.02638.x.
View
17.
Hu B, Jin J, Guo A, Zhang H, Luo J, Gao G
. GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics. 2014; 31(8):1296-7.
PMC: 4393523.
DOI: 10.1093/bioinformatics/btu817.
View
18.
Hurst L
. The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 2002; 18(9):486.
DOI: 10.1016/s0168-9525(02)02722-1.
View
19.
Hirayama T, Kieber J, Hirayama N, Kogan M, Guzman P, Nourizadeh S
. RESPONSIVE-TO-ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is required for ethylene signaling in Arabidopsis. Cell. 1999; 97(3):383-93.
DOI: 10.1016/s0092-8674(00)80747-3.
View
20.
Fang X, Wang L, Deng X, Wang P, Ma Q, Nian H
. Genome-wide characterization of soybean P 1B -ATPases gene family provides functional implications in cadmium responses. BMC Genomics. 2016; 17:376.
PMC: 4874001.
DOI: 10.1186/s12864-016-2730-2.
View