6.
Yu J, Wang Z, Wang J, Zhong W, Ju M, Cai R
. The Role of Ceria in a Hybrid Catalyst toward Alkaline Water Oxidation. ChemSusChem. 2020; 13(19):5273-5279.
DOI: 10.1002/cssc.202001542.
View
7.
Peng Q, Zhuang X, Wei L, Shi L, Isimjan T, Hou R
. Niobium-Incorporated CoSe Nanothorns with Electronic Structural Alterations for Efficient Alkaline Oxygen Evolution Reaction at High Current Density. ChemSusChem. 2022; 15(16):e202200827.
DOI: 10.1002/cssc.202200827.
View
8.
Xiang W, Yang N, Li X, Linnemann J, Hagemann U, Ruediger O
. 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nat Commun. 2022; 13(1):179.
PMC: 8748757.
DOI: 10.1038/s41467-021-27788-2.
View
9.
Walton R
. Perovskite Oxides Prepared by Hydrothermal and Solvothermal Synthesis: A Review of Crystallisation, Chemistry, and Compositions. Chemistry. 2020; 26(42):9041-9069.
DOI: 10.1002/chem.202000707.
View
10.
Kumar N, Kumar M, Nagaiah T, Siruguri V, Rayaprol S, Yadav A
. Investigation of New -Site-Disordered Perovskite Oxide CaLaScRuO: An Efficient Oxygen Bifunctional Electrocatalyst in a Highly Alkaline Medium. ACS Appl Mater Interfaces. 2020; 12(8):9190-9200.
DOI: 10.1021/acsami.9b20199.
View
11.
Retuerto M, Calle-Vallejo F, Pascual L, Lumbeeck G, Fernandez-Diaz M, Croft M
. LaSrNiMnRuO Double Perovskite with Enhanced ORR/OER Bifunctional Catalytic Activity. ACS Appl Mater Interfaces. 2019; 11(24):21454-21464.
DOI: 10.1021/acsami.9b02077.
View
12.
Gao L, Cui X, Sewell C, Li J, Lin Z
. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem Soc Rev. 2021; 50(15):8428-8469.
DOI: 10.1039/d0cs00962h.
View
13.
Vu T, Bondzior B, Stefanska D, Miniajluk N, Deren P
. Synthesis, Structure, Morphology, and Luminescent Properties of BaMgWO: Eu Double Perovskite Obtained by a Novel Co-Precipitation Method. Materials (Basel). 2020; 13(7).
PMC: 7178313.
DOI: 10.3390/ma13071614.
View
14.
Duan Y, Yu Z, Hu S, Zheng X, Zhang C, Ding H
. Scaled-Up Synthesis of Amorphous NiFeMo Oxides and Their Rapid Surface Reconstruction for Superior Oxygen Evolution Catalysis. Angew Chem Int Ed Engl. 2019; 58(44):15772-15777.
DOI: 10.1002/anie.201909939.
View
15.
Schweinar K, Gault B, Mouton I, Kasian O
. Lattice Oxygen Exchange in Rutile IrO during the Oxygen Evolution Reaction. J Phys Chem Lett. 2020; 11(13):5008-5014.
PMC: 7341534.
DOI: 10.1021/acs.jpclett.0c01258.
View
16.
Olowoyo J, Kriek R
. Recent Progress on Bimetallic-Based Spinels as Electrocatalysts for the Oxygen Evolution Reaction. Small. 2022; 18(41):e2203125.
DOI: 10.1002/smll.202203125.
View
17.
Liu H, Xie R, Wang Q, Han J, Han Y, Wang J
. Enhanced OER Performance and Dynamic Transition of Surface Reconstruction in LaNiO Thin Films with Nanoparticles Decoration. Adv Sci (Weinh). 2023; 10(13):e2207128.
PMC: 10161029.
DOI: 10.1002/advs.202207128.
View
18.
Navas D, Fuentes S, Castro-Alvarez A, Chavez-Angel E
. Review on Sol-Gel Synthesis of Perovskite and Oxide Nanomaterials. Gels. 2021; 7(4).
PMC: 8700921.
DOI: 10.3390/gels7040275.
View
19.
He D, He G, Jiang H, Chen Z, Huang M
. Enhanced durability and activity of the perovskite electrocatalyst PrBaCoO by Ca doping for the oxygen evolution reaction at room temperature. Chem Commun (Camb). 2017; 53(37):5132-5135.
DOI: 10.1039/c7cc00786h.
View
20.
Chen Q, Liu G, Liu S, Su H, Wang Y, Li J
. Remodeling the Tumor Microenvironment with Emerging Nanotherapeutics. Trends Pharmacol Sci. 2017; 39(1):59-74.
DOI: 10.1016/j.tips.2017.10.009.
View