6.
FITZGERALD L, Walton K, Dixon J, Largent B
. PTP NE-6: a brain-enriched receptor-type protein tyrosine phosphatase with a divergent catalytic domain. J Neurochem. 1997; 68(5):1820-9.
DOI: 10.1046/j.1471-4159.1997.68051820.x.
View
7.
Saeki K, Zhu M, Kubosaki A, Xie J, Lan M, Notkins A
. Targeted disruption of the protein tyrosine phosphatase-like molecule IA-2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes. 2002; 51(6):1842-50.
DOI: 10.2337/diabetes.51.6.1842.
View
8.
Kubosaki A, Gross S, Miura J, Saeki K, Zhu M, Nakamura S
. Targeted disruption of the IA-2beta gene causes glucose intolerance and impairs insulin secretion but does not prevent the development of diabetes in NOD mice. Diabetes. 2004; 53(7):1684-91.
DOI: 10.2337/diabetes.53.7.1684.
View
9.
Omar-Hmeadi M, Idevall-Hagren O
. Insulin granule biogenesis and exocytosis. Cell Mol Life Sci. 2020; 78(5):1957-1970.
PMC: 7966131.
DOI: 10.1007/s00018-020-03688-4.
View
10.
Henquin J, Nenquin M, Szollosi A, Kubosaki A, Notkins A
. Insulin secretion in islets from mice with a double knockout for the dense core vesicle proteins islet antigen-2 (IA-2) and IA-2beta. J Endocrinol. 2008; 196(3):573-81.
DOI: 10.1677/JOE-07-0496.
View
11.
Primo M, Jakoncic J, Noguera M, Risso V, Sosa L, Sica M
. Protein-protein interactions in crystals of the human receptor-type protein tyrosine phosphatase ICA512 ectodomain. PLoS One. 2011; 6(9):e24191.
PMC: 3174154.
DOI: 10.1371/journal.pone.0024191.
View
12.
Suckale J, Solimena M
. The insulin secretory granule as a signaling hub. Trends Endocrinol Metab. 2010; 21(10):599-609.
DOI: 10.1016/j.tem.2010.06.003.
View
13.
Caromile L, Oganesian A, Coats S, Seifert R, Bowen-Pope D
. The neurosecretory vesicle protein phogrin functions as a phosphatidylinositol phosphatase to regulate insulin secretion. J Biol Chem. 2010; 285(14):10487-96.
PMC: 2856256.
DOI: 10.1074/jbc.M109.066563.
View
14.
Weir G, Gaglia J, Bonner-Weir S
. Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol. 2020; 8(3):249-256.
PMC: 7098467.
DOI: 10.1016/S2213-8587(20)30022-X.
View
15.
Maachi H, Fergusson G, Ethier M, Brill G, Katz L, Honig L
. HB-EGF Signaling Is Required for Glucose-Induced Pancreatic β-Cell Proliferation in Rats. Diabetes. 2019; 69(3):369-380.
PMC: 7034189.
DOI: 10.2337/db19-0643.
View
16.
Torii S, Saito N, Kawano A, Hou N, Ueki K, Kulkarni R
. Gene silencing of phogrin unveils its essential role in glucose-responsive pancreatic beta-cell growth. Diabetes. 2008; 58(3):682-92.
PMC: 2646067.
DOI: 10.2337/db08-0970.
View
17.
Yasui T, Mashiko M, Obi A, Mori H, Ito-Murata M, Hayakawa H
. Insulin granule morphology and crinosome formation in mice lacking the pancreatic β cell-specific phogrin (PTPRN2) gene. Histochem Cell Biol. 2023; 161(3):223-238.
DOI: 10.1007/s00418-023-02256-8.
View
18.
Cui L, Yu W, Deaizpurua H, Schmidli R, Pallen C
. Cloning and characterization of islet cell antigen-related protein-tyrosine phosphatase (PTP), a novel receptor-like PTP and autoantigen in insulin-dependent diabetes. J Biol Chem. 1996; 271(40):24817-23.
View
19.
Wang Y, Kaestner K
. Single-Cell RNA-Seq of the Pancreatic Islets--a Promise Not yet Fulfilled?. Cell Metab. 2018; 29(3):539-544.
PMC: 6402960.
DOI: 10.1016/j.cmet.2018.11.016.
View
20.
Stamateris R, Sharma R, Kong Y, Ebrahimpour P, Panday D, Ranganath P
. Glucose Induces Mouse β-Cell Proliferation via IRS2, MTOR, and Cyclin D2 but Not the Insulin Receptor. Diabetes. 2016; 65(4):981-95.
PMC: 5314707.
DOI: 10.2337/db15-0529.
View