6.
Miranda E, Bianchi P, Destro A, Morenghi E, Malesci A, Santoro A
. Genetic and epigenetic alterations in primary colorectal cancers and related lymph node and liver metastases. Cancer. 2012; 119(2):266-76.
DOI: 10.1002/cncr.27722.
View
7.
Yang M, Guo Y, Liu X, Liu N
. HMGA1 Promotes Hepatic Metastasis of Colorectal Cancer by Inducing Expression of Glucose Transporter 3 (GLUT3). Med Sci Monit. 2020; 26:e924975.
PMC: 7532698.
DOI: 10.12659/MSM.924975.
View
8.
Qi J, Sun H, Zhang Y, Wang Z, Xun Z, Li Z
. Single-cell and spatial analysis reveal interaction of FAP fibroblasts and SPP1 macrophages in colorectal cancer. Nat Commun. 2022; 13(1):1742.
PMC: 8976074.
DOI: 10.1038/s41467-022-29366-6.
View
9.
Lim L, Lau N, Garrett-Engele P, Grimson A, Schelter J, Castle J
. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature. 2005; 433(7027):769-73.
DOI: 10.1038/nature03315.
View
10.
Hur K, Toiyama Y, Schetter A, Okugawa Y, Harris C, Boland C
. Identification of a metastasis-specific MicroRNA signature in human colorectal cancer. J Natl Cancer Inst. 2015; 107(3).
PMC: 4334826.
DOI: 10.1093/jnci/dju492.
View
11.
Santos C, Azuara D, Vieitez J, Paez D, Falco E, Elez E
. Phase II study of high-sensitivity genotyping of KRAS, NRAS, BRAF and PIK3CA to ultra-select metastatic colorectal cancer patients for panitumumab plus FOLFIRI: the ULTRA trial. Ann Oncol. 2019; 30(5):796-803.
DOI: 10.1093/annonc/mdz082.
View
12.
Brannon A, Vakiani E, Sylvester B, Scott S, McDermott G, Shah R
. Comparative sequencing analysis reveals high genomic concordance between matched primary and metastatic colorectal cancer lesions. Genome Biol. 2014; 15(8):454.
PMC: 4189196.
DOI: 10.1186/s13059-014-0454-7.
View
13.
Liu Y, Guo F, Zhu X, Guo W, Fu T, Wang W
. Death Domain-Associated Protein Promotes Colon Cancer Metastasis through Direct Interaction with ZEB1. J Cancer. 2020; 11(3):750-758.
PMC: 6959037.
DOI: 10.7150/jca.34233.
View
14.
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X
. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 2015; 22(3):256-64.
DOI: 10.1038/nsmb.2959.
View
15.
Serrano M, Hannon G, Beach D
. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature. 1993; 366(6456):704-7.
DOI: 10.1038/366704a0.
View
16.
Geissmann F, Gordon S, Hume D, Mowat A, Randolph G
. Unravelling mononuclear phagocyte heterogeneity. Nat Rev Immunol. 2010; 10(6):453-60.
PMC: 3032581.
DOI: 10.1038/nri2784.
View
17.
Vitale I, Shema E, Loi S, Galluzzi L
. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat Med. 2021; 27(2):212-224.
DOI: 10.1038/s41591-021-01233-9.
View
18.
Di Nicolantonio F, Martini M, Molinari F, Sartore-Bianchi A, Arena S, Saletti P
. Wild-type BRAF is required for response to panitumumab or cetuximab in metastatic colorectal cancer. J Clin Oncol. 2008; 26(35):5705-12.
DOI: 10.1200/JCO.2008.18.0786.
View
19.
Li Y, Zhao Z, Xu C, Zhou Z, Zhu Z, You T
. HMGA2 induces transcription factor Slug expression to promote epithelial-to-mesenchymal transition and contributes to colon cancer progression. Cancer Lett. 2014; 355(1):130-40.
DOI: 10.1016/j.canlet.2014.09.007.
View
20.
Teng S, Li Y, Yang M, Qi R, Huang Y, Wang Q
. Tissue-specific transcription reprogramming promotes liver metastasis of colorectal cancer. Cell Res. 2019; 30(1):34-49.
PMC: 6951341.
DOI: 10.1038/s41422-019-0259-z.
View