6.
Staal S
. Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A. 1987; 84(14):5034-7.
PMC: 305241.
DOI: 10.1073/pnas.84.14.5034.
View
7.
Nana-Sinkam S, Croce C
. MicroRNA regulation of tumorigenesis, cancer progression and interpatient heterogeneity: towards clinical use. Genome Biol. 2014; 15(9):445.
PMC: 4709998.
DOI: 10.1186/s13059-014-0445-8.
View
8.
Chai J, Dong W, Xie C, Wang L, Han D, Wang S
. MicroRNA-494 sensitizes colon cancer cells to fluorouracil through regulation of DPYD. IUBMB Life. 2015; 67(3):191-201.
DOI: 10.1002/iub.1361.
View
9.
Ergun S, Akgun O, Taskurt Hekim N, Aslan S, Ari F, Gunes S
. The Interrelationship Between and miR-128/193a-5p/494 in Imatinib Resistance in Prostate Cancer. Anticancer Agents Med Chem. 2022; 23(3):360-365.
DOI: 10.2174/1871520622666220601093452.
View
10.
Jiang H, Harris M, Rothman P
. IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol. 2000; 105(6 Pt 1):1063-70.
DOI: 10.1067/mai.2000.107604.
View
11.
Bellacosa A, De Feo D, Godwin A, BELL D, Cheng J, Altomare D
. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer. 1995; 64(4):280-5.
DOI: 10.1002/ijc.2910640412.
View
12.
Locati M, Mantovani A, Sica A
. Macrophage activation and polarization as an adaptive component of innate immunity. Adv Immunol. 2013; 120:163-84.
DOI: 10.1016/B978-0-12-417028-5.00006-5.
View
13.
Cheng J, Godwin A, Bellacosa A, Taguchi T, Franke T, Hamilton T
. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci U S A. 1992; 89(19):9267-71.
PMC: 50107.
DOI: 10.1073/pnas.89.19.9267.
View
14.
Ceppi P, Mudduluru G, Kumarswamy R, Rapa I, Scagliotti G, Papotti M
. Loss of miR-200c expression induces an aggressive, invasive, and chemoresistant phenotype in non-small cell lung cancer. Mol Cancer Res. 2010; 8(9):1207-16.
DOI: 10.1158/1541-7786.MCR-10-0052.
View
15.
Siegel R, DeSantis C, Jemal A
. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014; 64(2):104-17.
DOI: 10.3322/caac.21220.
View
16.
van der Kwast R, Woudenberg T, Quax P, Nossent A
. MicroRNA-411 and Its 5'-IsomiR Have Distinct Targets and Functions and Are Differentially Regulated in the Vasculature under Ischemia. Mol Ther. 2019; 28(1):157-170.
PMC: 6953895.
DOI: 10.1016/j.ymthe.2019.10.002.
View
17.
Zhang J, Zhu Y, Hu L, Yan F, Chen J
. miR-494 induces EndMT and promotes the development of HCC (Hepatocellular Carcinoma) by targeting SIRT3/TGF-β/SMAD signaling pathway. Sci Rep. 2019; 9(1):7213.
PMC: 6510769.
DOI: 10.1038/s41598-019-43731-4.
View
18.
Abba M, Patil N, Leupold J, Moniuszko M, Utikal J, Niklinski J
. MicroRNAs as novel targets and tools in cancer therapy. Cancer Lett. 2016; 387:84-94.
DOI: 10.1016/j.canlet.2016.03.043.
View
19.
Laudato S, Patil N, Abba M, Leupold J, Benner A, Gaiser T
. P53-induced miR-30e-5p inhibits colorectal cancer invasion and metastasis by targeting ITGA6 and ITGB1. Int J Cancer. 2017; 141(9):1879-1890.
DOI: 10.1002/ijc.30854.
View
20.
Zhao X, Liang T, Fu J
. miR-494 inhibits invasion and proliferation of gastric cancer by targeting IGF-1R. Eur Rev Med Pharmacol Sci. 2016; 20(18):3818-3824.
View