» Articles » PMID: 38201209

Role of Genetic Variation in Transcriptional Regulatory Elements in Heart Rhythm

Overview
Journal Cells
Publisher MDPI
Date 2024 Jan 11
PMID 38201209
Authors
Affiliations
Soon will be listed here.
Abstract

Genetic predisposition to cardiac arrhythmias has been a field of intense investigation. Research initially focused on rare hereditary arrhythmias, but over the last two decades, the role of genetic variation (single nucleotide polymorphisms) in heart rate, rhythm, and arrhythmias has been taken into consideration as well. In particular, genome-wide association studies have identified hundreds of genomic loci associated with quantitative electrocardiographic traits, atrial fibrillation, and less common arrhythmias such as Brugada syndrome. A significant number of associated variants have been found to systematically localize in non-coding regulatory elements that control the tissue-specific and temporal transcription of genes encoding transcription factors, ion channels, and other proteins. However, the identification of causal variants and the mechanism underlying their impact on phenotype has proven difficult due to the complex tissue-specific, time-resolved, condition-dependent, and combinatorial function of regulatory elements, as well as their modest conservation across different model species. In this review, we discuss research efforts aimed at identifying and characterizing-trait-associated variant regulatory elements and the molecular mechanisms underlying their impact on heart rate or rhythm.

References
1.
van Weerd J, Badi I, van den Boogaard M, Stefanovic S, van de Werken H, Gomez-Velazquez M . A large permissive regulatory domain exclusively controls Tbx3 expression in the cardiac conduction system. Circ Res. 2014; 115(4):432-41. DOI: 10.1161/CIRCRESAHA.115.303591. View

2.
van Setten J, Brody J, Jamshidi Y, Swenson B, Butler A, Campbell H . PR interval genome-wide association meta-analysis identifies 50 loci associated with atrial and atrioventricular electrical activity. Nat Commun. 2018; 9(1):2904. PMC: 6060178. DOI: 10.1038/s41467-018-04766-9. View

3.
McFadden D, Barbosa A, Richardson J, Schneider M, Srivastava D, Olson E . The Hand1 and Hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. Development. 2004; 132(1):189-201. DOI: 10.1242/dev.01562. View

4.
Lubitz S, Lunetta K, Lin H, Arking D, Trompet S, Li G . Novel genetic markers associate with atrial fibrillation risk in Europeans and Japanese. J Am Coll Cardiol. 2014; 63(12):1200-1210. PMC: 4009240. DOI: 10.1016/j.jacc.2013.12.015. View

5.
Steimle J, Moskowitz I . TBX5: A Key Regulator of Heart Development. Curr Top Dev Biol. 2017; 122:195-221. PMC: 5371404. DOI: 10.1016/bs.ctdb.2016.08.008. View