JDLL: a Library to Run Deep Learning Models on Java Bioimage Informatics Platforms
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Citing Articles
Bridging the gap: Integrating cutting-edge techniques into biological imaging with deepImageJ.
Fuster-Barcelo C, Garcia-Lopez-de-Haro C, Gomez-de-Mariscal E, Ouyang W, Olivo-Marin J, Sage D Biol Imaging. 2025; 4():e14.
PMID: 39776608 PMC: 11704127. DOI: 10.1017/S2633903X24000114.
References
1.
Weigert M, Schmidt U, Boothe T, Muller A, Dibrov A, Jain A
. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods. 2018; 15(12):1090-1097.
DOI: 10.1038/s41592-018-0216-7.
View
2.
Belthangady C, Royer L
. Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction. Nat Methods. 2019; 16(12):1215-1225.
DOI: 10.1038/s41592-019-0458-z.
View
3.
Moen E, Bannon D, Kudo T, Graf W, Covert M, Van Valen D
. Deep learning for cellular image analysis. Nat Methods. 2019; 16(12):1233-1246.
PMC: 8759575.
DOI: 10.1038/s41592-019-0403-1.
View
4.
Pietzsch T, Preibisch S, Tomancak P, Saalfeld S
. ImgLib2--generic image processing in Java. Bioinformatics. 2012; 28(22):3009-11.
PMC: 3496339.
DOI: 10.1093/bioinformatics/bts543.
View
5.
de Chaumont F, Dallongeville S, Chenouard N, Herve N, Pop S, Provoost T
. Icy: an open bioimage informatics platform for extended reproducible research. Nat Methods. 2012; 9(7):690-6.
DOI: 10.1038/nmeth.2075.
View