» Articles » PMID: 38177473

Challenges and Opportunities in Quantum Machine Learning

Overview
Journal Nat Comput Sci
Publisher Springer Nature
Specialties Biology
Science
Date 2024 Jan 4
PMID 38177473
Authors
Affiliations
Soon will be listed here.
Abstract

At the intersection of machine learning and quantum computing, quantum machine learning has the potential of accelerating data analysis, especially for quantum data, with applications for quantum materials, biochemistry and high-energy physics. Nevertheless, challenges remain regarding the trainability of quantum machine learning models. Here we review current methods and applications for quantum machine learning. We highlight differences between quantum and classical machine learning, with a focus on quantum neural networks and quantum deep learning. Finally, we discuss opportunities for quantum advantage with quantum machine learning.

Citing Articles

Empowering nanophotonic applications via artificial intelligence: pathways, progress, and prospects.

Chen W, Yang S, Yan Y, Gao Y, Zhu J, Dong Z Nanophotonics. 2025; 14(4):429-447.

PMID: 39975637 PMC: 11834058. DOI: 10.1515/nanoph-2024-0723.


Hybrid quantum neural networks show strongly reduced need for free parameters in entity matching.

Bischof L, Teodoropol S, Fuchslin R, Stockinger K Sci Rep. 2025; 15(1):4318.

PMID: 39910095 PMC: 11799173. DOI: 10.1038/s41598-025-88177-z.


Quantum-limited stochastic optical neural networks operating at a few quanta per activation.

Ma S, Wang T, Laydevant J, Wright L, McMahon P Nat Commun. 2025; 16(1):359.

PMID: 39753530 PMC: 11698857. DOI: 10.1038/s41467-024-55220-y.


Quantum machine learning for Lyapunov-stabilized computation offloading in next-generation MEC networks.

Verma V, Nishad D, Sharma V, Singh V, Verma A, Shah D Sci Rep. 2025; 15(1):405.

PMID: 39747569 PMC: 11696707. DOI: 10.1038/s41598-024-84441-w.


From quantum communication fundamentals to decoherence mitigation strategies: Addressing global quantum network challenges and projected applications.

Khan M, Ghafoor S, Zaidi S, Khan H, Ahmad A Heliyon. 2024; 10(14):e34331.

PMID: 39687217 PMC: 11648567. DOI: 10.1016/j.heliyon.2024.e34331.