» Articles » PMID: 38174734

Cell Type-specific Connectome Predicts Distributed Working Memory Activity in the Mouse Brain

Overview
Journal Elife
Specialty Biology
Date 2024 Jan 4
PMID 38174734
Authors
Affiliations
Soon will be listed here.
Abstract

Recent advances in connectomics and neurophysiology make it possible to probe whole-brain mechanisms of cognition and behavior. We developed a large-scale model of the multiregional mouse brain for a cardinal cognitive function called working memory, the brain's ability to internally hold and process information without sensory input. The model is built on mesoscopic connectome data for interareal cortical connections and endowed with a macroscopic gradient of measured parvalbumin-expressing interneuron density. We found that working memory coding is distributed yet exhibits modularity; the spatial pattern of mnemonic representation is determined by long-range cell type-specific targeting and density of cell classes. Cell type-specific graph measures predict the activity patterns and a core subnetwork for memory maintenance. The model shows numerous attractor states, which are self-sustained internal states (each engaging a distinct subset of areas). This work provides a framework to interpret large-scale recordings of brain activity during cognition, while highlighting the need for cell type-specific connectomics.

Citing Articles

Network Mechanisms Underlying the Regional Diversity of Variance and Time Scales of the Brain's Spontaneous Activity Fluctuations.

Ponce-Alvarez A J Neurosci. 2025; 45(10).

PMID: 39843234 PMC: 11884397. DOI: 10.1523/JNEUROSCI.1699-24.2024.


Cognitive network interactions through communication subspaces in large-scale models of the neocortex.

Pereira-Obilinovic U, Froudist-Walsh S, Wang X bioRxiv. 2024; .

PMID: 39554020 PMC: 11566003. DOI: 10.1101/2024.11.01.621513.


Signatures of hierarchical temporal processing in the mouse visual system.

Rudelt L, Gonzalez Marx D, Spitzner F, Cramer B, Zierenberg J, Priesemann V PLoS Comput Biol. 2024; 20(8):e1012355.

PMID: 39173067 PMC: 11373856. DOI: 10.1371/journal.pcbi.1012355.


The meso-connectomes of mouse, marmoset, and macaque: network organization and the emergence of higher cognition.

Magrou L, Joyce M, Froudist-Walsh S, Datta D, Wang X, Martinez-Trujillo J Cereb Cortex. 2024; 34(5).

PMID: 38771244 PMC: 11107384. DOI: 10.1093/cercor/bhae174.


Unifying network model links recency and central tendency biases in working memory.

Boboeva V, Pezzotta A, Clopath C, Akrami A Elife. 2024; 12.

PMID: 38656279 PMC: 11042808. DOI: 10.7554/eLife.86725.

References
1.
Zandvakili A, Kohn A . Coordinated Neuronal Activity Enhances Corticocortical Communication. Neuron. 2015; 87(4):827-39. PMC: 4545497. DOI: 10.1016/j.neuron.2015.07.026. View

2.
Erlich J, Bialek M, Brody C . A cortical substrate for memory-guided orienting in the rat. Neuron. 2011; 72(2):330-43. PMC: 3212026. DOI: 10.1016/j.neuron.2011.07.010. View

3.
Murray J, Bernacchia A, Freedman D, Romo R, Wallis J, Cai X . A hierarchy of intrinsic timescales across primate cortex. Nat Neurosci. 2014; 17(12):1661-3. PMC: 4241138. DOI: 10.1038/nn.3862. View

4.
Mejias J, Wang X . Mechanisms of distributed working memory in a large-scale network of macaque neocortex. Elife. 2022; 11. PMC: 8871396. DOI: 10.7554/eLife.72136. View

5.
Jonikaitis D, Noudoost B, Moore T . Dissociating the Contributions of Frontal Eye Field Activity to Spatial Working Memory and Motor Preparation. J Neurosci. 2023; 43(50):8681-8689. PMC: 10727190. DOI: 10.1523/JNEUROSCI.1071-23.2023. View