Machine Learning Outcome Prediction Using Stress Perfusion Cardiac Magnetic Resonance Reports and Natural Language Processing of Electronic Health Records
Overview
Overview
Authors
Authors
Affiliations
Affiliations
Soon will be listed here.
Citing Articles
Alskaf E, Scannell C, Suinesiaputra A, Crawley R, Masci P, Young A J Med Artif Intell. 2024; 8:2.
PMID: 39664888 PMC: 7617223. DOI: 10.21037/jmai-24-94.
Alskaf E, Scannell C, Crawley R, Suinesiaputra A, Masci P, Young A Inform Med Unlocked. 2024; 49:101537.
PMID: 39015506 PMC: 7616223. DOI: 10.1016/j.imu.2024.101537.
References
1.
Pettit R, Fullem R, Cheng C, Amos C
. Artificial intelligence, machine learning, and deep learning for clinical outcome prediction. Emerg Top Life Sci. 2021; .
PMC: 8786279.
DOI: 10.1042/ETLS20210246.
View
2.
Rieber J, Huber A, Erhard I, Mueller S, Schweyer M, Koenig A
. Cardiac magnetic resonance perfusion imaging for the functional assessment of coronary artery disease: a comparison with coronary angiography and fractional flow reserve. Eur Heart J. 2006; 27(12):1465-71.
DOI: 10.1093/eurheartj/ehl039.
View
3.
Al-Saadi N, Nagel E, Gross M, Bornstedt A, Schnackenburg B, Klein C
. Noninvasive detection of myocardial ischemia from perfusion reserve based on cardiovascular magnetic resonance. Circulation. 2000; 101(12):1379-83.
DOI: 10.1161/01.cir.101.12.1379.
View
4.
Jackson R, Kartoglu I, Stringer C, Gorrell G, Roberts A, Song X
. CogStack - experiences of deploying integrated information retrieval and extraction services in a large National Health Service Foundation Trust hospital. BMC Med Inform Decis Mak. 2018; 18(1):47.
PMC: 6020175.
DOI: 10.1186/s12911-018-0623-9.
View
5.
Kraljevic Z, Searle T, Shek A, Roguski L, Noor K, Bean D
. Multi-domain clinical natural language processing with MedCAT: The Medical Concept Annotation Toolkit. Artif Intell Med. 2021; 117:102083.
DOI: 10.1016/j.artmed.2021.102083.
View