6.
Kopp M, Arosio P
. Microfluidic Approaches for the Characterization of Therapeutic Proteins. J Pharm Sci. 2018; 107(5):1228-1236.
DOI: 10.1016/j.xphs.2018.01.001.
View
7.
Cunningham O, Scott M, Zhou Z, Finlay W
. Polyreactivity and polyspecificity in therapeutic antibody development: risk factors for failure in preclinical and clinical development campaigns. MAbs. 2021; 13(1):1999195.
PMC: 8726659.
DOI: 10.1080/19420862.2021.1999195.
View
8.
Han Q, Bradshaw E, Nilsson B, Hafler D, Love J
. Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip. 2010; 10(11):1391-400.
PMC: 3128808.
DOI: 10.1039/b926849a.
View
9.
Zahavi D, Weiner L
. Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel). 2020; 9(3).
PMC: 7551545.
DOI: 10.3390/antib9030034.
View
10.
Lin Z, Sui J, Javanmard M
. A two-minute assay for electronic quantification of antibodies in saliva enabled through a reusable microfluidic multi-frequency impedance cytometer and machine learning analysis. Biomed Microdevices. 2023; 25(2):13.
PMC: 10024011.
DOI: 10.1007/s10544-023-00647-1.
View
11.
Shi Q, Qin L, Wei W, Geng F, Fan R, Shin Y
. Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A. 2011; 109(2):419-24.
PMC: 3258586.
DOI: 10.1073/pnas.1110865109.
View
12.
Pan X, Lopez Acevedo S, Cuziol C, De Tavernier E, Fahad A, Longjam P
. Large-scale antibody immune response mapping of splenic B cells and bone marrow plasma cells in a transgenic mouse model. Front Immunol. 2023; 14:1137069.
PMC: 10280637.
DOI: 10.3389/fimmu.2023.1137069.
View
13.
Almagro J, Pedraza-Escalona M, Arrieta H, Perez-Tapia S
. Phage Display Libraries for Antibody Therapeutic Discovery and Development. Antibodies (Basel). 2019; 8(3).
PMC: 6784186.
DOI: 10.3390/antib8030044.
View
14.
Suan D, Krautler N, Maag J, Butt D, Bourne K, Hermes J
. CCR6 Defines Memory B Cell Precursors in Mouse and Human Germinal Centers, Revealing Light-Zone Location and Predominant Low Antigen Affinity. Immunity. 2017; 47(6):1142-1153.e4.
DOI: 10.1016/j.immuni.2017.11.022.
View
15.
Sharonov G, Serebrovskaya E, Yuzhakova D, Britanova O, Chudakov D
. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. 2020; 20(5):294-307.
DOI: 10.1038/s41577-019-0257-x.
View
16.
Josephides D, Davoli S, Whitley W, Ruis R, Salter R, Gokkaya S
. Cyto-Mine: An Integrated, Picodroplet System for High-Throughput Single-Cell Analysis, Sorting, Dispensing, and Monoclonality Assurance. SLAS Technol. 2020; 25(2):177-189.
DOI: 10.1177/2472630319892571.
View
17.
Bounab Y, Eyer K, Dixneuf S, Rybczynska M, Chauvel C, Mistretta M
. Dynamic single-cell phenotyping of immune cells using the microfluidic platform DropMap. Nat Protoc. 2020; 15(9):2920-2955.
DOI: 10.1038/s41596-020-0354-0.
View
18.
Wu M, Wu S, Wang G, Liu W, Chu L, Jiang T
. Microfluidic particle dam for direct visualization of SARS-CoV-2 antibody levels in COVID-19 vaccinees. Sci Adv. 2022; 8(22):eabn6064.
PMC: 9166397.
DOI: 10.1126/sciadv.abn6064.
View
19.
Jammes F, Maerkl S
. How single-cell immunology is benefiting from microfluidic technologies. Microsyst Nanoeng. 2021; 6:45.
PMC: 8433390.
DOI: 10.1038/s41378-020-0140-8.
View
20.
Xu J, Miao H, Wang J, Pan G
. Molecularly Imprinted Synthetic Antibodies: From Chemical Design to Biomedical Applications. Small. 2020; 16(27):e1906644.
DOI: 10.1002/smll.201906644.
View