6.
Fong K, Wong C, Wang S, Delaquis P
. How Broad Is Enough: The Host Range of Bacteriophages and Its Impact on the Agri-Food Sector. Phage (New Rochelle). 2022; 2(2):83-91.
PMC: 9041489.
DOI: 10.1089/phage.2020.0036.
View
7.
Gal-Mor O, Boyle E, Grassl G
. Same species, different diseases: how and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Front Microbiol. 2014; 5:391.
PMC: 4120697.
DOI: 10.3389/fmicb.2014.00391.
View
8.
Hailu W, Helmy Y, Carney-Knisely G, Kauffman M, Fraga D, Rajashekara G
. Prevalence and Antimicrobial Resistance Profiles of Foodborne Pathogens Isolated from Dairy Cattle and Poultry Manure Amended Farms in Northeastern Ohio, the United States. Antibiotics (Basel). 2021; 10(12).
PMC: 8698512.
DOI: 10.3390/antibiotics10121450.
View
9.
Hooton S, Timms A, Rowsell J, Wilson R, Connerton I
. Salmonella Typhimurium-specific bacteriophage ΦSH19 and the origins of species specificity in the Vi01-like phage family. Virol J. 2011; 8:498.
PMC: 3220722.
DOI: 10.1186/1743-422X-8-498.
View
10.
Huang C, Shi J, Ma W, Li Z, Wang J, Li J
. Isolation, characterization, and application of a novel specific Salmonella bacteriophage in different food matrices. Food Res Int. 2018; 111:631-641.
DOI: 10.1016/j.foodres.2018.05.071.
View
11.
Huang C, Virk S, Shi J, Zhou Y, Willias S, Morsy M
. Isolation, Characterization, and Application of Bacteriophage LPSE1 Against in Ready to Eat (RTE) Foods. Front Microbiol. 2018; 9:1046.
PMC: 5982681.
DOI: 10.3389/fmicb.2018.01046.
View
12.
Khan M, Rahman S
. Use of Phages to Treat Antimicrobial-Resistant Infections in Poultry. Vet Sci. 2022; 9(8).
PMC: 9416511.
DOI: 10.3390/vetsci9080438.
View
13.
Khan Mirzaei M, Nilsson A
. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS One. 2015; 10(3):e0118557.
PMC: 4356574.
DOI: 10.1371/journal.pone.0118557.
View
14.
Kim S, Adeyemi D, Park M
. Characterization of a New and Efficient Polyvalent Phage Infecting O157:H7, spp., and . Microorganisms. 2021; 9(10).
PMC: 8540833.
DOI: 10.3390/microorganisms9102105.
View
15.
Kim S, Kim S, Rahman M, Kim J
. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. J Microbiol. 2018; 56(12):917-925.
DOI: 10.1007/s12275-018-8310-1.
View
16.
Kowalska B
. Fresh vegetables and fruit as a source of bacteria. Ann Agric Environ Med. 2023; 30(1):9-14.
DOI: 10.26444/aaem/156765.
View
17.
Krumperman P
. Multiple antibiotic resistance indexing of Escherichia coli to identify high-risk sources of fecal contamination of foods. Appl Environ Microbiol. 1983; 46(1):165-70.
PMC: 239283.
DOI: 10.1128/aem.46.1.165-170.1983.
View
18.
Kuang X, Hao H, Dai M, Wang Y, Ahmad I, Liu Z
. Serotypes and antimicrobial susceptibility of Salmonella spp. isolated from farm animals in China. Front Microbiol. 2015; 6:602.
PMC: 4476277.
DOI: 10.3389/fmicb.2015.00602.
View
19.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K
. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol. 2018; 35(6):1547-1549.
PMC: 5967553.
DOI: 10.1093/molbev/msy096.
View
20.
Lee C, Choi I, Park D, Park M
. Isolation and characterization of a novel O157:H7-specific phage as a biocontrol agent. J Environ Health Sci Eng. 2020; 18(1):189-199.
PMC: 7203308.
DOI: 10.1007/s40201-020-00452-5.
View