6.
Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A
. The genome of the domesticated apple (Malus × domestica Borkh.). Nat Genet. 2010; 42(10):833-9.
DOI: 10.1038/ng.654.
View
7.
Buckler 4th E, Thornsberry J
. Plant molecular diversity and applications to genomics. Curr Opin Plant Biol. 2002; 5(2):107-11.
DOI: 10.1016/s1369-5266(02)00238-8.
View
8.
McClure K, Gong Y, Song J, Vinqvist-Tymchuk M, Palmer L, Fan L
. Genome-wide association studies in apple reveal loci of large effect controlling apple polyphenols. Hortic Res. 2019; 6:107.
PMC: 6804656.
DOI: 10.1038/s41438-019-0190-y.
View
9.
Peakall R, Smouse P
. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update. Bioinformatics. 2012; 28(19):2537-9.
PMC: 3463245.
DOI: 10.1093/bioinformatics/bts460.
View
10.
Singh K, Rawat S, Kumar K, Agarwal S, Goel S, Jagannath A
. Identification of significant marker-trait associations for Fusarium wilt resistance in a genetically diverse core collection of safflower using AFLP and SSR markers. J Appl Genet. 2022; 63(3):447-462.
DOI: 10.1007/s13353-022-00694-z.
View
11.
Ahmed N, Mir J, Mir R, Rather N, Rashid R, Wani S
. SSR and RAPD analysis of genetic diversity in walnut (Juglans regia L.) genotypes from Jammu and Kashmir, India. Physiol Mol Biol Plants. 2013; 18(2):149-60.
PMC: 3550507.
DOI: 10.1007/s12298-012-0104-z.
View
12.
Cai D, Xiao Y, Yang W, Ye W, Wang B, Younas M
. Association mapping of six yield‑related traits in rapeseed (Brassica napus L.). Theor Appl Genet. 2013; 127(1):85-96.
DOI: 10.1007/s00122-013-2203-9.
View
13.
McClure K, Gardner K, Toivonen P, Hampson C, Song J, Forney C
. QTL analysis of soft scald in two apple populations. Hortic Res. 2016; 3:16043.
PMC: 5022660.
DOI: 10.1038/hortres.2016.43.
View
14.
Zhao J, Huang L, Ren X, Pandey M, Wu B, Chen Y
. Genetic Variation and Association Mapping of Seed-Related Traits in Cultivated Peanut ( L.) Using Single-Locus Simple Sequence Repeat Markers. Front Plant Sci. 2018; 8:2105.
PMC: 5732145.
DOI: 10.3389/fpls.2017.02105.
View
15.
Kunihisa M, Moriya S, Abe K, Okada K, Haji T, Hayashi T
. Identification of QTLs for fruit quality traits in Japanese apples: QTLs for early ripening are tightly related to preharvest fruit drop. Breed Sci. 2014; 64(3):240-51.
PMC: 4154613.
DOI: 10.1270/jsbbs.64.240.
View
16.
Evanno G, Regnaut S, Goudet J
. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005; 14(8):2611-20.
DOI: 10.1111/j.1365-294X.2005.02553.x.
View
17.
Aranzana M, Kim S, Zhao K, Bakker E, Horton M, Jakob K
. Genome-wide association mapping in Arabidopsis identifies previously known flowering time and pathogen resistance genes. PLoS Genet. 2005; 1(5):e60.
PMC: 1283159.
DOI: 10.1371/journal.pgen.0010060.
View
18.
Han Y, Zheng D, Vimolmangkang S, Khan M, Beever J, Korban S
. Integration of physical and genetic maps in apple confirms whole-genome and segmental duplications in the apple genome. J Exp Bot. 2011; 62(14):5117-30.
PMC: 3193016.
DOI: 10.1093/jxb/err215.
View
19.
Larsen B, Migicovsky Z, Jeppesen A, Gardner K, Toldam-Andersen T, Myles S
. Genome-Wide Association Studies in Apple Reveal Loci for Aroma Volatiles, Sugar Composition, and Harvest Date. Plant Genome. 2019; 12(2).
DOI: 10.3835/plantgenome2018.12.0104.
View
20.
Zhen Q, Fang T, Peng Q, Liao L, Zhao L, Owiti A
. Developing gene-tagged molecular markers for evaluation of genetic association of apple genes with fruit sugar accumulation. Hortic Res. 2018; 5:14.
PMC: 5859117.
DOI: 10.1038/s41438-018-0024-3.
View